Rezaee Zohre, Akbarzadeh-T Mohammad-R
Biomedical Engineering Group, Department of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information Processing (SCIIP), Ferdowsi University of Mashhad, Mashhad, Iran.
Basic Clin Neurosci. 2025 Jan-Feb;16(1):143-158. doi: 10.32598/bcn.2024.6857.1. Epub 2025 Jan 1.
Clean, noise-free data are ideal but often unattainable in biological control systems. Filters are usually employed to remove noise. But this process also leads to the loss or alteration of information. A considerable challenge is managing the uncertain knowledge using a proper and realistic mathematical representation and staying consistent with biological patterns and behaviors. This study explores the potential of fuzzy logic as a computational paradigm to manage uncertainties in the nonlinear dynamics of human walking. This field has paid little attention to this aspect despite its considerable nonlinear and uncertain behavior due to adaptability, muscle fatigue, environmental noise, and external disturbances.
We employed a fuzzy logic-based controller integrated with functional electrical stimulation (FES) and a gait basin of attraction concept to enhance gait performance. Our controller focused on accommodating imprecision in shank angle deviation and angular velocity rather than relying on predetermined trajectories.
Our findings indicate that more fuzzy rules and partitions improve the similarity of the gait dynamics to those of a healthy human. Moreover, higher membership function overlaps lead to more robust gait control.
The study demonstrates that fuzzy logic can effectively manage uncertainties in the nonlinear dynamics of human walking, improving gait performance and robustness. This approach offers a promising direction for goal-oriented rehabilitation strategies by mimicking the human mind's ability to handle challenging and unknown environments.
干净、无噪声的数据是理想的,但在生物控制系统中往往难以实现。通常采用滤波器来去除噪声。但这个过程也会导致信息的丢失或改变。一个相当大的挑战是使用适当且现实的数学表示来管理不确定的知识,并与生物模式和行为保持一致。本研究探讨了模糊逻辑作为一种计算范式在管理人类行走非线性动力学中的不确定性方面的潜力。尽管由于适应性、肌肉疲劳、环境噪声和外部干扰,该领域具有相当大的非线性和不确定行为,但对此方面的关注却很少。
我们采用了一种基于模糊逻辑的控制器,该控制器与功能性电刺激(FES)和步态吸引盆概念相结合,以提高步态性能。我们的控制器专注于适应小腿角度偏差和角速度的不精确性,而不是依赖于预定轨迹。
我们的研究结果表明,更多的模糊规则和划分提高了步态动力学与健康人类步态动力学的相似性。此外,更高的隶属函数重叠导致更稳健的步态控制。
该研究表明,模糊逻辑可以有效地管理人类行走非线性动力学中的不确定性,提高步态性能和稳健性。这种方法通过模仿人类思维处理具有挑战性和未知环境的能力,为目标导向的康复策略提供了一个有前景的方向。