Rani Simran, Kumar Pradeep, Dahiya Priyanka, Mehta Aditi, Dang Amita Suneja, Suneja Pooja
Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India.
Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India.
Indian J Microbiol. 2025 Jun;65(2):1345-1356. doi: 10.1007/s12088-025-01455-2. Epub 2025 Feb 8.
'Green' synthesis of nanoparticles from microorganisms and plants is a sustainable alternative to the conventional chemo-physical methods because of its environment-friendliness. Microorganisms take up extracellular and intracellular pathways to manufacture nanoparticles. This study was aimed at optimization of the parameters influencing the biosynthesis of Cu/CuONPs (Copper/Copper oxide nanoparticles) by CPHN2 using OFAT (One-factor-at-a-time) approach. The optimum biotransformation was achieved at 5 mM concentration of CuSO, 32 h incubation time, 6 h reaction time, equal mixing ratio of supernatant and CuSO, 7 pH, and 23 °C temperature. Biosynthesized Cu/CuONPs along with those formed chemically, were characterized using UV-Visible spectrophotometer, resulting in a characteristic peak between 550 and 650 nm. Dynamic light scattering (DLS) reported that Z-average and Zeta potential of Cu/CuONPs were 291.9 nm and - 21 mV for biosynthesized and 179 nm and - 6.49 mV for chemosynthesized NPs. HR-TEM (High Resolution-Transmission Electron Microscopy) revealed hexagonal NPs in size range of 5-35 nm. In addition, FTIR (Fourier Transform Infrared) spectrum elucidated different peaks attributed to the Cu/CuONPs, alkynes, O-H, and N-H bonds, of the molecules involved in synthesis and stabilization of biosynthesized NPs. Antimicrobial assay conducted in the presence of 100 µg/ml solution of biosynthesized Cu/CuONPs led to 66.01, 68.31, and 55.73%, inhibition of growth at 7, 14, and 21 h, respectively, whereas chemosynthesized Cu/CuONPs had negligible impact. The biosynthesized NPs also exhibited 5.48-fold increase in inhibitory activity than chemosynthesized NPs on growth. The results suggests that biosynthesized Cu/CuONPs can serve as ecofriendly and economical method for managing the infections led by gram-positive bacteria.
The online version contains supplementary material available at 10.1007/s12088-025-01455-2.
由于其环境友好性,利用微生物和植物“绿色”合成纳米颗粒是传统化学物理方法的一种可持续替代方案。微生物通过细胞外和细胞内途径制造纳米颗粒。本研究旨在采用单因素实验法(OFAT)优化影响CPHN2生物合成铜/氧化铜纳米颗粒(Cu/CuONPs)的参数。在硫酸铜浓度为5 mM、孵育时间为32 h、反应时间为6 h、上清液与硫酸铜的混合比例相等、pH值为7以及温度为23°C的条件下实现了最佳生物转化。使用紫外可见分光光度计对生物合成的Cu/CuONPs以及化学合成的Cu/CuONPs进行了表征,在550至650 nm之间出现了特征峰。动态光散射(DLS)报告显示,生物合成的Cu/CuONPs的Z平均粒径和zeta电位分别为291.9 nm和 -21 mV,化学合成的纳米颗粒的Z平均粒径和zeta电位分别为179 nm和 -6.49 mV。高分辨率透射电子显微镜(HR-TEM)显示尺寸范围为5 - 35 nm的六边形纳米颗粒。此外,傅里叶变换红外光谱(FTIR)阐明了与参与生物合成纳米颗粒合成和稳定的分子中的Cu/CuONPs、炔烃、O - H和N - H键相关的不同峰。在存在100 μg/ml生物合成的Cu/CuONPs溶液的情况下进行的抗菌试验分别在7、14和21 h导致生长抑制率为66.01%、68.31%和55.73%,而化学合成的Cu/CuONPs的影响可忽略不计。生物合成的纳米颗粒对生长的抑制活性也比化学合成的纳米颗粒高5.48倍。结果表明,生物合成的Cu/CuONPs可作为管理革兰氏阳性菌引起的感染的生态友好且经济的方法。
在线版本包含可在10.1007/s12088-025-01455-2获取的补充材料。