Suppr超能文献

预测成人肝移植患者术后谵妄风险的列线图模型:一项回顾性研究

Nomogram Model for Predicting Risk of Postoperative Delirium in Adult Liver Transplant Patients: A Retrospective Study.

作者信息

Yu Ling-Ling, Gong Yu, Fang Fang, Wang Ting, Cang Jing

机构信息

Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.

出版信息

Neuropsychiatr Dis Treat. 2025 Jul 8;21:1359-1369. doi: 10.2147/NDT.S521718. eCollection 2025.

Abstract

BACKGROUND

Postoperative delirium is a common and serious complication following liver transplantation, early identification of high-risk patients is crucial for implementing preventive strategies and improving clinical outcomes.

OBJECTIVE

To develop and validate a prediction model for postoperative delirium (POD) in adult liver transplant patients using preoperative baseline characteristics, intraoperative factors and postoperative parameters available within 24 hours after surgery. The model aims to assess the risk of POD and provide early identification of high-risk patients.

METHODS

A retrospective analysis was conducted on liver transplant patients, classified based on the presence or absence of POD. Key risk factors were identified using univariate and multivariate logistic regression. The prediction model was established and validated, with performance evaluated using the area under the receiver operating characteristic curve (AUROC). The prediction model was visualized as a nomogram for practical application.

RESULTS

A total of 480 patients were included, with a POD incidence of 30.8%. Six key predictors were identified: age, APACHE score, albumin, AST, BUN, and blood ammonia. The final model achieved an AUROC of 0.757 (95% CI: 0.709-0.806), sensitivity of 66.2%, and specificity of 77.7%. The optimal classification threshold of the model is 0.341, that is, patients with a predicted probability exceeding 0.341 were classified as high-risk for delirium.

CONCLUSION

The developed nomogram effectively predicts postoperative delirium risk in liver transplant patients, offering clinical utility for risk stratification and management.

摘要

背景

术后谵妄是肝移植后常见且严重的并发症,早期识别高危患者对于实施预防策略和改善临床结局至关重要。

目的

利用术前基线特征、术中因素及术后24小时内可得的术后参数,开发并验证成人肝移植患者术后谵妄(POD)的预测模型。该模型旨在评估POD风险并早期识别高危患者。

方法

对肝移植患者进行回顾性分析,根据是否发生POD进行分类。采用单因素和多因素逻辑回归确定关键危险因素。建立并验证预测模型,使用受试者操作特征曲线下面积(AUROC)评估模型性能。将预测模型可视化为列线图以便实际应用。

结果

共纳入480例患者,POD发生率为30.8%。确定了六个关键预测因素:年龄、APACHE评分、白蛋白、谷草转氨酶、血尿素氮和血氨。最终模型的AUROC为0.757(95%CI:0.709 - 0.806),敏感性为66.2%,特异性为77.7%。该模型的最佳分类阈值为0.341,即预测概率超过0.341的患者被分类为谵妄高危患者。

结论

所开发的列线图可有效预测肝移植患者术后谵妄风险,为风险分层和管理提供临床实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2c6/12255266/97e59781af4e/NDT-21-1359-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验