Suppr超能文献

使用柯尔莫哥洛夫 - 阿诺德网络从胎心监护记录预测胎儿健康状况

Fetal Health Prediction From Cardiotocography Recordings Using Kolmogorov-Arnold Networks.

作者信息

Wong W K, Juwono Filbert H, Apriono Catur, Fitri Ismi Rosyiana

机构信息

Department of Electrical and Computer EngineeringCurtin University Malaysia Miri 98009 Malaysia.

Department of Electrical and Electronic EngineeringXi'an Jiaotong-Liverpool University Suzhou 215123 China.

出版信息

IEEE Open J Eng Med Biol. 2025 Mar 10;6:345-351. doi: 10.1109/OJEMB.2025.3549594. eCollection 2025.

Abstract

Cardiotocograph (CTG) is a widely used device for monitoring fetal health during the labor phase. However, its interpretation remains challenging due to the complex and nonlinear nature of the data. Therefore, this paper aims to propose a reliable machine learning model for predicting fetal health. This paper introduces a state-of-the-art approach for predicting fetal health from CTG recordings (statistical features) using the Kolmogorov-Arnold Networks (KANs). KANs have recently been proposed asa powerful competitor to the conventional transfer function approach in feedforward neural networks. The proposed method leverages the powerful capabilities of KANs to model the intricate relationships within the CTG data, leading to improved classification accuracy. We validate our approach on a publicly available CTG dataset, which consists of statistical features of the acquired recordings and labeled fetal health conditions. The results show that KANs outperform traditional machine learning models, achieving average classification accuracy values of 93.6% and 92.6% for two-class and three-class classification tasks, respectively. Our results indicate that the KAN model is particularly effective in handling the nonlinearity inherent in CTG recordings, making it a promising tool for enhancing automated fetal health assessment.

摘要

胎心宫缩图(CTG)是一种在分娩阶段广泛用于监测胎儿健康的设备。然而,由于数据的复杂性和非线性,对其解读仍然具有挑战性。因此,本文旨在提出一种可靠的机器学习模型来预测胎儿健康状况。本文介绍了一种利用柯尔莫哥洛夫 - 阿诺德网络(KANs)从CTG记录(统计特征)预测胎儿健康状况的先进方法。KANs最近被提出,作为前馈神经网络中传统传递函数方法的有力竞争对手。所提出的方法利用KANs的强大功能对CTG数据中的复杂关系进行建模,从而提高分类准确率。我们在一个公开可用的CTG数据集上验证了我们的方法,该数据集由采集记录的统计特征和标记的胎儿健康状况组成。结果表明,KANs优于传统机器学习模型,在二分类和三分类任务中分别实现了93.6%和92.6%的平均分类准确率。我们的结果表明,KAN模型在处理CTG记录中固有的非线性方面特别有效,使其成为增强自动胎儿健康评估的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6b/12251149/9777195a2f10/juwon1-3549594.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验