Suppr超能文献

基于支持向量机和卷积神经网络的胎心监护图智能分类:多场景研究。

Intelligent classification of cardiotocography based on a support vector machine and convolutional neural network: Multiscene research.

机构信息

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Wuhan Second Ship Design and Research Institute, Wuhan, Hubei, China.

出版信息

Int J Gynaecol Obstet. 2024 May;165(2):737-745. doi: 10.1002/ijgo.15236. Epub 2023 Nov 27.

Abstract

OBJECTIVE

To propose a computerized system utilizing multiscene analysis based on a support vector machine (SVM) and convolutional neural network (CNN) to assess cardiotocography (CTG) intelligently.

METHODS

We retrospectively collected 2542 CTG records of singleton pregnancies delivered at the maternity ward of the First Affiliated Hospital of Xi'an Jiaotong University from October 10, 2020, to August 7, 2021. CTG records were divided into five categories (baseline, variability, acceleration, deceleration, and normality). Apart from the category of normality, the other four different categories of abnormal data correspond to four scenes. Each scene was divided into training and testing sets at 9:1 or 7:3. We used three computer algorithms (dynamic threshold, SVM, and CNN) to learn and optimize the system. Accuracy, sensitivity, and specificity were performed to evaluate performance.

RESULTS

The global accuracy, sensitivity, and specificity of the system were 93.88%, 93.06%, and 94.33%, respectively. In acceleration and deceleration scenes, when the convolution kernel was 3, the test data set reached the highest performance.

CONCLUSION

The multiscene research model using SVM and CNN is a potential effective tool to assist obstetricians in classifying CTG intelligently.

摘要

目的

提出一种基于支持向量机(SVM)和卷积神经网络(CNN)的多场景分析计算机系统,实现胎心监护图(CTG)的智能评估。

方法

我们回顾性收集了 2020 年 10 月 10 日至 2021 年 8 月 7 日西安交通大学第一附属医院产房 2542 例单胎妊娠的 CTG 记录。将 CTG 记录分为五类(基线、变异、加速、减速和正常)。除正常类别外,其他四个不同类别的异常数据对应四个场景。每个场景均以 9:1 或 7:3 的比例分为训练集和测试集。我们使用三种计算机算法(动态阈值、SVM 和 CNN)来学习和优化系统。通过准确率、敏感度和特异性来评估性能。

结果

系统的全局准确率、敏感度和特异性分别为 93.88%、93.06%和 94.33%。在加速和减速场景中,当卷积核为 3 时,测试数据集达到了最高性能。

结论

基于 SVM 和 CNN 的多场景研究模型是一种辅助产科医生进行 CTG 智能分类的潜在有效工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验