Suppr超能文献

无烟煤与烟煤生物降解机制及结构演化特征的比较

Comparison of Biodegradation Mechanisms and Structural Evolution Characteristics between Anthracite and Bituminous Coals.

作者信息

Liu Bingjun, Zhou Tianyao, Chen Ruifeng, Jiang Xiangqing, Zhou Wanlong, Zhang Xun

机构信息

Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan 232001, China.

State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province 232001, China.

出版信息

ACS Omega. 2025 Jun 25;10(26):28269-28278. doi: 10.1021/acsomega.5c03151. eCollection 2025 Jul 8.

Abstract

Microbial-enhanced coalbed methane technology has been found to promote biomethane production, while the influence of coal rank on anaerobic degradation remains unclear. This study evaluated the biomethane potential of anthracite and high-volatile bituminous coal through comprehensive analyses including gene sequencing, FTIR, XRD, and SEM. Semiquantitative analysis of molecular structures revealed that anthracite consisted predominantly of aromatic hydrocarbons, whereas bituminous coal contained more aliphatic structures. Microbial degradation mainly affects heteroatomic functional groups and aliphatic structures, showing limited efficiency in degrading aromatic layer structures. Anthracite displays a smooth surface microstructure, whereas high volatile bituminous coal's rough surface provides more microbial attachment sites. In high volatile bituminous coal cultures, functional bacteria such as , , and reached a combined relative abundance of 63.1%, which increased the variety of organic heterocyclic compounds, organic acids, and their derivatives in metabolites. These effects ultimately resulted in a 72.4% higher methane yield from bituminous coal compared to anthracite. This research provides important insights for accelerating the engineering application of microbial-enhanced coal-bed methane technology.

摘要

微生物强化煤层气技术已被发现可促进生物甲烷的产生,而煤阶对厌氧降解的影响仍不明确。本研究通过基因测序、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和扫描电子显微镜(SEM)等综合分析方法,评估了无烟煤和高挥发分烟煤的生物甲烷潜力。分子结构的半定量分析表明,无烟煤主要由芳烃组成,而烟煤含有更多的脂肪族结构。微生物降解主要影响杂原子官能团和脂肪族结构,对芳层结构的降解效率有限。无烟煤表面微观结构光滑,而高挥发分烟煤粗糙的表面提供了更多的微生物附着位点。在高挥发分烟煤培养物中,诸如[此处原文缺失具体菌种名称]等功能菌的相对丰度总和达到63.1%,这增加了代谢产物中有机杂环化合物、有机酸及其衍生物的种类。这些作用最终使得烟煤的甲烷产量比无烟煤高出72.4%。本研究为加速微生物强化煤层气技术的工程应用提供了重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/834c/12242612/287902fdd607/ao5c03151_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验