Leite Jonas, Bollache Emilie, Nguyen Vincent, Gueda Moussa Moussa, Wallet Thomas, Prigent Mikaël, Bouazizi Khaoula, Zarai Mohamed, Lamy Jérôme, Marsac Perrine, Procopi Niki, Zeitouni Michel, Redheuil Alban, Gallo Antonio, Mousseaux Elie, Montalescot Gilles, Dietenbeck Thomas, Kachenoura Nadjia
Laboratoire D'Imagerie Biomédicale (LIB), Sorbonne Université, INSERM, CNRS, Paris, France.
Sorbonne Université, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.
Eur Heart J Imaging Methods Pract. 2025 Jun 3;2(4):qyaf070. doi: 10.1093/ehjimp/qyaf070. eCollection 2024 Oct.
Feature tracking (FT) is increasingly used on dynamic cardiac magnetic resonance (CMR) images for myocardial strain evaluation but often requires manual initialization, which is tedious and source of variability, especially on the challenging long-axis (LAX) images. Accordingly, we designed a pipeline combining deep learning (DL) with FT for left ventricular (LV) and left atrial (LA) longitudinal myocardial strain estimation.
We studied a multivendor database of 684 individuals divided into: training = 845, tuning = 281, and testing = 116 LAX-CMR cine 2- and/or 4-chamber views. Images were centre cropped. Then, a 2D- and 3D-ResUnet, which considers time as the third dimension, were designed for LV/LA segmentation and used to (i) estimate LV and LA strains (Full 2D-/3D-DL) and (ii) initialize an FT algorithm and further derive LV and LA strains (FT-initialized by 2D-/3D-DL). Left ventricular and LA contours and strain peaks were compared against reference standard (RS) measures performed by an expert using a semiautomated software. Intraclass-correlation-coefficient (ICC) was used to study reproducibility. 3D-DL outperformed 2D-DL segmentation (Dice-scores: 0.94 ± 0.02 vs. 0.90 ± 0.09, = 0.002) and was stable across vendors, field strengths and imaging views. The added value of combining DL with FT was revealed by higher correlations and lower Bland-Altman biases against RS for FT initialized by 3D-DL strains (r ≥ 0.91, |mean-bias|≤0.65%) than for full 3D-DL strains (r ≤ 0.80, |mean-bias|<3.07%). Semiautomated human vs. FT initialized by 3D-DL (ICC ≥ 0.76) and inter-human strain reproducibility was equivalent.
Generalizable DL-based LV and LA segmentation on LAX-CMR images was proposed. Its combination with FT resulted in fully automated and reliable LV and LA strain measures, reaching human reproducibility.
特征跟踪(FT)越来越多地用于动态心脏磁共振(CMR)图像以评估心肌应变,但通常需要手动初始化,这既繁琐又存在变异性,尤其是在具有挑战性的长轴(LAX)图像上。因此,我们设计了一种将深度学习(DL)与FT相结合的流程,用于估计左心室(LV)和左心房(LA)的纵向心肌应变。
我们研究了一个包含684名个体的多厂商数据库,分为:训练组=845例、调整组=281例和测试组=116例,均有LAX-CMR电影2腔和/或4腔视图。图像进行中心裁剪。然后,设计了一种将时间视为第三维的2D和3D ResUnet用于LV/LA分割,并用于(i)估计LV和LA应变(全2D/3D-DL),以及(ii)初始化FT算法并进一步推导LV和LA应变(由2D/3D-DL初始化的FT)。将左心室和左心房轮廓及应变峰值与专家使用半自动软件进行的参考标准(RS)测量结果进行比较。使用组内相关系数(ICC)研究可重复性。3D-DL在分割方面优于2D-DL(骰子系数:0.94±0.02对0.90±0.09,P=0.002),并且在不同厂商、场强和成像视图中均保持稳定。与全3D-DL应变相比,由3D-DL应变初始化的FT与RS具有更高的相关性和更低的Bland-Altman偏差,这揭示了将DL与FT相结合的附加价值(r≥0.91,|平均偏差|≤0.65%,而全3D-DL应变r≤0.80,|平均偏差|<3.07%)。半自动人工测量与由3D-DL初始化的FT之间(ICC≥0.76)以及人工之间的应变可重复性相当。
提出了基于可推广的深度学习对LAX-CMR图像进行LV和LA分割的方法。将其与FT相结合可实现全自动且可靠的LV和LA应变测量,达到人工测量的可重复性。