Li Yang, Li-Han Leo Yan, Tian Hua
Department of OrthopedicsPeking University Third Hospital Beijing 100191 China.
Engineering Research Center of Bone and Joint Precision MedicineMinistry of Education Beijing 100191 China.
IEEE J Transl Eng Health Med. 2025 Apr 15;13:174-182. doi: 10.1109/JTEHM.2025.3560877. eCollection 2025.
The clinical diagnosis of developmental dysplasia of the hip (DDH) typically involves manually measuring key radiological angles-Center-Edge (CE), Tönnis, and Sharp angles-from pelvic radiographs, a process that is time-consuming and susceptible to variability. This study aims to develop an automated system that integrates these measurements to enhance the accuracy and consistency of DDH diagnosis. We developed an end-to-end deep learning model for keypoint detection that accurately identifies eight anatomical keypoints from pelvic radiographs, enabling the automated calculation of CE, Tönnis, and Sharp angles. To support the diagnostic decision, we introduced a novel data-driven scoring system that combines the information from all three angles into a comprehensive and explainable diagnostic output. The system demonstrated superior consistency in angle measurements compared to a cohort of eight moderately experienced orthopedists. The intraclass correlation coefficients for the CE, Tönnis, and Sharp angles were 0.957 (95% CI: 0.952-0.962), 0.942 (95% CI: 0.937-0.947), and 0.966 (95% CI: 0.964-0.968), respectively. The system achieved a diagnostic F1 score of 0.863 (95% CI: 0.851-0.876), significantly outperforming the orthopedist group (0.777, 95% CI: 0.737-0.817, [Formula: see text]), as well as using clinical diagnostic criteria for each angle individually ([Formula: see text]). The proposed system provides reliable and consistent automated measurements of radiological angles and an explainable diagnostic output for DDH, outperforming moderately experienced clinicians.Clinical impact: This AI-powered solution reduces the variability and potential errors of manual measurements, offering clinicians a more consistent and interpretable tool for DDH diagnosis.
发育性髋关节发育不良(DDH)的临床诊断通常需要手动测量骨盆X光片中的关键放射学角度——中心边缘(CE)角、托尼斯角和夏普角,这一过程既耗时又容易出现差异。本研究旨在开发一种自动化系统,将这些测量整合起来,以提高DDH诊断的准确性和一致性。我们开发了一种用于关键点检测的端到端深度学习模型,该模型能从骨盆X光片中准确识别八个解剖关键点,从而实现CE角、托尼斯角和夏普角的自动计算。为了支持诊断决策,我们引入了一种新颖的数据驱动评分系统,该系统将来自所有三个角度的信息整合为一个全面且可解释的诊断输出。与一组八名经验中等的骨科医生相比,该系统在角度测量方面表现出更高的一致性。CE角、托尼斯角和夏普角的组内相关系数分别为0.957(95%置信区间:0.952 - 0.962)、0.942(95%置信区间:0.937 - 0.947)和0.966(95%置信区间:0.964 - 0.968)。该系统的诊断F1得分为0.863(95%置信区间:0.851 - 0.876),显著优于骨科医生组(0.777,95%置信区间:0.737 - 0.817,[公式:见原文]),也优于单独使用每个角度的临床诊断标准([公式:见原文])。所提出的系统为DDH提供了可靠且一致的放射学角度自动测量以及可解释的诊断输出,优于经验中等的临床医生。临床影响:这种人工智能驱动的解决方案减少了手动测量的变异性和潜在误差,为临床医生提供了一种用于DDH诊断的更一致且可解释的工具。