Zhang Min, Wang Xuehui, Zhang Chaocai, Sun Dandan, Wu Zhuole, Yang Dayan, Zhang Pingyang, Jing Xiangxiang
Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, P. R. China.
Department of Ultrasound, Affliated Hainan Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, P. R. China.
J Mater Chem B. 2025 Aug 6;13(31):9559-9575. doi: 10.1039/d5tb00318k.
Ultrasound (US) offers exceptional tissue penetration, making it a promising modality for the treatment of deep-seated cancers. Sonodynamic therapy (SDT) leverages US to activate low-toxicity sonosensitizers, generating cytotoxic reactive oxygen species (ROS) that induce cancer cell death. However, its clinical effectiveness is hindered by challenges such as hypoxia and overexpression of glutathione (GSH) in the tumor microenvironment (TME). In this study, we designed and synthesized a sodium-hyaluronate-modified TCCP-BSO@CaO@SH nanoplatform (TBC@SH NPs) to enhance SDT efficacy in hepatocellular carcinoma (HCC). The TBC@SH NPs were prepared through a straightforward one-pot method, involving the self-assembly of CaO nanoparticles with tetrakis (4-carboxyphenyl) porphyrin (TCPP) and L-buthionine sulfoximine (BSO), followed by surface modification with sodium hyaluronate (SH) for targeted delivery to CD44 receptors on HCC cells. In the mildly acidic TME, TBC@SH NPs facilitate oxygen release, induce calcium ion overload, inhibit GSH synthesis, and generate substantial reactive oxygen species (ROS) under ultrasound irradiation. These synergistic effects collectively amplify oxidative stress, significantly enhancing SDT therapeutic efficacy in HCC treatment. Encouraging results were observed in both HCC cell models and animal tumor models. This study highlights the potential of ultrasound-mediated SDT therapy for HCC and provides valuable insights into the development of integrated nanoplatforms for enhanced HCC treatment.
超声(US)具有出色的组织穿透能力,使其成为治疗深部癌症的一种有前景的方式。声动力疗法(SDT)利用超声激活低毒性的声敏剂,产生细胞毒性活性氧(ROS),从而诱导癌细胞死亡。然而,其临床疗效受到肿瘤微环境(TME)中缺氧和谷胱甘肽(GSH)过表达等挑战的阻碍。在本研究中,我们设计并合成了一种透明质酸钠修饰的TCCP-BSO@CaO@SH纳米平台(TBC@SH NPs),以提高肝细胞癌(HCC)的声动力治疗效果。TBC@SH NPs通过一种简单的一锅法制备,包括氧化钙纳米颗粒与四(4-羧基苯基)卟啉(TCPP)和L-丁硫氨酸亚砜胺(BSO)的自组装,随后用透明质酸钠(SH)进行表面修饰,以靶向递送至肝癌细胞上的CD44受体。在轻度酸性的肿瘤微环境中,TBC@SH NPs促进氧气释放,诱导钙离子过载,抑制谷胱甘肽合成,并在超声照射下产生大量活性氧(ROS)。这些协同效应共同放大氧化应激,显著提高声动力疗法在肝癌治疗中的疗效。在肝癌细胞模型和动物肿瘤模型中均观察到了令人鼓舞的结果。本研究突出了超声介导的声动力疗法治疗肝癌的潜力,并为开发用于增强肝癌治疗的集成纳米平台提供了有价值的见解。