Suppr超能文献

免疫检查点抑制剂改善生存时代晚期肾细胞癌预后模型的长期性能

Long-Term Performance of Prognostic Models for Advanced Renal Cell Carcinoma in the Era of Improved Survival With Immune Checkpoint Inhibitors.

作者信息

Mantia Charlene M, Jegede Opeyemi A, McDermott David F, Heng Daniel Y C, Xie Wanling, Choueiri Toni K, Atkins Michael B, Regan Meredith M

机构信息

Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA.

Department of Medicine, Harvard Medical School, Boston, MA.

出版信息

JCO Oncol Pract. 2025 Jul 14:OP2500089. doi: 10.1200/OP-25-00089.

Abstract

PURPOSE

In the era of prolonged survival for advanced renal cell carcinoma (aRCC) with standard-of-care first-line therapy now including immune checkpoint inhibitor, re-evaluation of the Memorial Sloan Kettering Cancer Center (MSKCC) and International Metastatic RCC Database Consortium (IMDC) prognostic models is overdue.

METHODS

Data from 1,052 patients with aRCC treated on the CheckMate-214 phase III randomized trial with first-line nivolumab + ipilimumab or sunitinib were analyzed after minimum 5 years of follow-up. The end point was overall survival (OS). To investigate long-term prognostication with each treatment approach, model performance based upon continuous risk score was assessed in a time-dependent manner of increasing 6-month intervals and globally over full follow-up, using discrimination concordance (c)-indices.

RESULTS

With time-dependent assessment, the IMDC and MSKCC models maintained their performance over approximately 2 years from sunitinib initiation (c ≥0.69 through 18-24 months); thereafter, the models' performances with long-term OS attenuated. Over full follow-up, the models' discrimination was c = 0.66 (95% CI, 0.658 to 0.664) and c = 0.64 (95% CI, 0.640 to 0.645), respectively, for the sunitinib group. After nivolumab + ipilimumab initiation, the IMDC and MSKCC models' global discrimination was c = 0.63 (95% CI, 0.628 to 0.634) and c = 0.61 (95% CI, 0.607 to 0.614), respectively. The models' performances were attenuated in the short term (c ranging 0.64-0.69 through 18-24 months) and the long term.

CONCLUSION

This retrospective analysis of the CheckMate-214 trial, in which nivolumab + ipilimumab improved survival versus sunitinib with 48% and 37% of patients, respectively, surviving beyond 5 years, confirmed the strength of the models' prognostication for the early years after first-line sunitinib initiation continuing to stratify three prognostic categories, but also diminished discrimination among long-term survivors and with initiation of nivolumab + ipilimumab. As novel treatments are developed and patients with aRCC live longer, new models to estimate long-term prognosis are needed.

摘要

目的

在晚期肾细胞癌(aRCC)长期生存的时代,目前标准一线治疗包括免疫检查点抑制剂,对纪念斯隆凯特琳癌症中心(MSKCC)和国际转移性肾细胞癌数据库联盟(IMDC)预后模型进行重新评估已迫在眉睫。

方法

对CheckMate-214 III期随机试验中接受一线纳武利尤单抗+伊匹木单抗或舒尼替尼治疗的1052例aRCC患者的数据进行分析,随访时间至少5年。终点为总生存期(OS)。为了研究每种治疗方法的长期预后,基于连续风险评分的模型性能以6个月为间隔逐步增加的时间依赖性方式进行评估,并在整个随访期间进行整体评估,使用鉴别一致性(c)指数。

结果

通过时间依赖性评估,IMDC和MSKCC模型在舒尼替尼开始使用后的大约2年内保持其性能(18至24个月内c≥0.69);此后,模型在长期OS方面的性能减弱。在整个随访期间,舒尼替尼组模型的鉴别能力分别为c = 0.66(95%CI,0.658至0.664)和c = 0.64(95%CI,0.640至0.645)。在开始使用纳武利尤单抗+伊匹木单抗后,IMDC和MSKCC模型的整体鉴别能力分别为c = 0.63(95%CI,0.628至0.634)和c = 0.61(95%CI,0.607至0.614)。模型性能在短期(18至24个月内c范围为0.64 - 0.69)和长期均减弱。

结论

对CheckMate-214试验的这项回顾性分析中,纳武利尤单抗+伊匹木单抗与舒尼替尼相比改善了生存率,分别有48%和37%的患者存活超过5年,证实了模型在一线舒尼替尼开始使用后的早期预后预测能力,继续将患者分为三个预后类别,但在长期幸存者之间以及开始使用纳武利尤单抗+伊匹木单抗后鉴别能力有所下降。随着新治疗方法的开发以及aRCC患者寿命延长 需要新的模型来估计长期预后。

相似文献

5
Neoadjuvant treatment for stage III and IV cutaneous melanoma.新辅助治疗 III 期和 IV 期皮肤黑色素瘤。
Cochrane Database Syst Rev. 2023 Jan 17;1(1):CD012974. doi: 10.1002/14651858.CD012974.pub2.
6
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

3
NCCN Guidelines® Insights: Kidney Cancer, Version 2.2024.NCCN 指南®洞察:肾癌,第 2.2024 版。
J Natl Compr Canc Netw. 2024 Feb;22(1):4-16. doi: 10.6004/jnccn.2024.0008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验