Lv Wenxuan, Que Kangwei, Chen Zikang, Shen Ao, Gong Mengling, Sun Chengxi, Gao Mangmang, Huang Wenchao, Chen Runfeng, Xu Ligang
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia750021, China.
ACS Appl Mater Interfaces. 2025 Jul 23;17(29):42011-42019. doi: 10.1021/acsami.5c09592. Epub 2025 Jul 14.
Dipole interlayer molecules have been incorporated into perovskite solar cells (PSCs) to enhance the energy level alignment between the perovskite and charge transport layers, improving charge extraction and device performance. However, the conventional dipole interlayer with a singular functionality is inadequate for high-efficiency PSCs with excellent long-term stability. Here, we design a functionalized dipole interlayer (FDI) between perovskite and electron transport layers that integrates multiple functionalities onto a novel dipole molecule. The FDI not only realizes the field-effect function of the conventional dipole interlayer for tuning energy level matching but also extends the function of the dipole interlayer for diminishing defects, fortifying the perovskite's resistance to moisture, and impeding the migration of I ions within the perovskite layer across perovskite interface. Consequently, FDI proves to be beneficial to air-processed PSCs under a high relative humidity of 45%, yielding enhanced power conversion efficiencies from 19.44 to 21.13%. Furthermore, unencapsulated devices exhibit excellent humidity stability and thermal stability under the standardized International Summit on Organic Photovoltaic Stability (ISOS) protocols for over 1000 h (ISOS-D-1) and 700 h (ISOS-D-2I), respectively. This work extends new functions for dipole interlayers and offers a convenient and effective approach for enhancing the performance of PSCs prepared in air environments.
偶极子中间层分子已被引入钙钛矿太阳能电池(PSC)中,以增强钙钛矿与电荷传输层之间的能级匹配,改善电荷提取和器件性能。然而,具有单一功能的传统偶极子中间层对于具有优异长期稳定性的高效PSC来说是不够的。在此,我们在钙钛矿和电子传输层之间设计了一种功能化偶极子中间层(FDI),将多种功能集成到一种新型偶极子分子上。FDI不仅实现了传统偶极子中间层用于调节能级匹配的场效应功能,还扩展了偶极子中间层减少缺陷、增强钙钛矿防潮性以及阻止碘离子在钙钛矿层内跨越钙钛矿界面迁移的功能。因此,FDI被证明对在45%的高相对湿度下通过空气处理的PSC有益,功率转换效率从19.44%提高到21.13%。此外,在标准化的国际有机光伏稳定性峰会(ISOS)协议下,未封装的器件分别在超过1000小时(ISOS-D-1)和700小时(ISOS-D-2I)的时间内表现出优异的湿度稳定性和热稳定性。这项工作扩展了偶极子中间层的新功能,并为提高在空气环境中制备的PSC的性能提供了一种方便有效的方法。