Suppr超能文献

磷酸化蛋白质组学揭示了甜菜单体附加系M14根系中的耐盐胁迫机制。

Phosphoproteomics revealed salt stress tolerance mechanisms in the roots of sugar beet monomeric addition line M14.

作者信息

Li Hongli, Sui Zhongxu, Qin Zixin, Chen Sixue, Yu Bing, Li Haiying

机构信息

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China.

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

出版信息

J Proteomics. 2025 Sep 15;320:105488. doi: 10.1016/j.jprot.2025.105488. Epub 2025 Jul 12.

Abstract

Soil salinity is a major abiotic stress that limits global crop production and food security. It is necessary to explore the mechanisms of salt stress tolerance in order to cultivate high-quality salt-tolerant varieties. Sugar beet M14 line exhibits capability of salt stress tolerance. Here we conducted a phosphoproteomic study of the sugar beet M14 roots treated with 200 mM and 400 mM NaCl. Using phosphopeptide enrichment and LC-MS/MS based phosphoproteomics techniques, 1427 differential abundant phosphoproteins (DAPPs) and 983 unique phosphoproteins were identified under 200 mM NaCl. 1234 DAPPs and 769 unique phosphopeptides were identified under 400 mM NaCl. The two datasets were significantly enriched for terms associated with protein kinases and transcription factors. Meanwhile, the biological pathways enriched between 200 mM and 400 mM NaCl containing signaling pathways, metabolism and transport were prominently represented, suggesting that distinct signaling cascades may converge in key biological processes (e.g., glycolysis, transport and reactive oxygen metabolism) to mediate the salt stress response and tolerance. Furthermore, unlike the DAPPs enriched in sugar beet M14 leaves, the DAPPs enriched in roots specifically participated in the plant-pathogen interaction and prenyltransferase pathways. Significance: Sugar beet is an important sugar-producing crop, and its roots are the primary organ usually affected by salt stress. However, the phosphoproteomics of sugar beet M14 roots under salt stress remains unclear. This study emphasizes the changes in the phosphorylation level of sugar beet M14 roots proteins under different salt concentrations. We analyzed the similarities and differences in function and participating pathways of the DAPPs and unique phosphoproteins obtained at different salt stresses. These findings not only provide important insights into the mechanisms mediated by phosphorylation modification in sugar beet M14 response to salt stress, but also will inform efforts toward improving crop yield and quality.

摘要

土壤盐渍化是一种主要的非生物胁迫,限制了全球作物产量和粮食安全。为了培育高品质的耐盐品种,探索耐盐胁迫机制很有必要。甜菜M14品系具有耐盐胁迫能力。在此,我们对用200 mM和400 mM NaCl处理的甜菜M14根系进行了磷酸化蛋白质组学研究。使用基于磷酸肽富集和LC-MS/MS的磷酸化蛋白质组学技术,在200 mM NaCl处理下鉴定出1427个差异丰度磷酸化蛋白(DAPP)和983个独特的磷酸化蛋白。在400 mM NaCl处理下鉴定出1234个DAPP和769个独特的磷酸肽。这两个数据集在与蛋白激酶和转录因子相关的术语上显著富集。同时,在200 mM和400 mM NaCl之间富集的生物途径,包括信号通路、代谢和转运,表现突出,表明不同的信号级联可能在关键生物学过程(如糖酵解、转运和活性氧代谢)中汇聚,以介导盐胁迫反应和耐受性。此外,与甜菜M14叶片中富集的DAPP不同,根系中富集的DAPP特别参与了植物-病原体相互作用和异戊烯基转移酶途径。意义:甜菜是一种重要的制糖作物,其根系是通常受盐胁迫影响的主要器官。然而,盐胁迫下甜菜M14根系的磷酸化蛋白质组学尚不清楚。本研究强调了不同盐浓度下甜菜M14根系蛋白质磷酸化水平的变化。我们分析了在不同盐胁迫下获得的DAPP和独特磷酸化蛋白在功能和参与途径上的异同。这些发现不仅为甜菜M14对盐胁迫反应中磷酸化修饰介导的机制提供了重要见解,也将为提高作物产量和品质的努力提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验