Suppr超能文献

磷酸化蛋白质组学分析为沙漠苔藓毛尖紫萼藓极端耐旱机制提供了新的见解。

Phosphoproteomics analysis provides novel insight into the mechanisms of extreme desiccation tolerance of the desert moss Syntrichia caninervis.

作者信息

Yin Fangliu, Liu Xuncheng, Hawar Amangul, Bai Wenwan, Yang Qilin, Zhang Huan, Cao Ting, Zhang Daoyuan, Li Xiaoshuang

机构信息

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Plant J. 2025 Aug;123(3):e70373. doi: 10.1111/tpj.70373.

Abstract

Syntrichia caninervis is a model species for research on desiccation tolerance (DT) because it is capable of rapidly responding to drastic changes in water conditions. Phosphorylation, a key post-translational modification process that is rapid and reversible, enables the rapid regulation of protein functions, aiding plants to quickly adapt to changing environments. Modifications to phosphorylation may play a crucial role in the DT of S. caninervis, although no studies have been published. Here, we report a 4D label-free high-resolution dynamic proteomic and phosphoproteomic analysis of S. caninervis during dehydration and rehydration, allowing for the quantification of 2854 proteins and 1177 phosphoproteins, including 1447 differentially expressed proteins (DEPs) and 699 differentially phosphorylated proteins (DPPs). Among the phosphoproteins, 36.5% displayed changes in protein abundance. The proteomic and phosphoproteomic changes involved proteins (DEPs and DPPs) that were mainly involved in photosynthesis, glutathione metabolism, the citrate cycle, and the biosynthesis of secondary metabolism pathways during dehydration. During rehydration, DEPs and DPPs were mainly associated with processes related to ribosome and energy metabolism. In summary, during dehydration, phosphorylation mainly regulates signal transduction and metabolic processes, allowing plants to adapt to a loss of water. During rehydration, phosphorylation controls repair and recovery mechanisms, restoring metabolic activity and reestablishing cellular functions. ScDHAR1, a protein involved in glutathione metabolism, was differentially phosphorylated at two serine sites (S29 and S218) in response to desiccation. Further analysis revealed that phosphorylation of S29/S218 in ScDHAR1 significantly increased its enzymatic activity, thereby enhancing the DT of S. caninervis in situ. This work establishes a phosphoprotein database for a DT moss. These findings not only broaden our understanding of S. caninervis DT but also fill knowledge gaps in the field of phosphoproteomics in DT mosses, while providing valuable data resources for future related research.

摘要

毛尖金发藓是耐脱水能力(DT)研究的模式物种,因为它能够对水分条件的剧烈变化做出快速响应。磷酸化是一种快速且可逆的关键翻译后修饰过程,能够快速调节蛋白质功能,帮助植物快速适应变化的环境。尽管尚未有相关研究发表,但磷酸化修饰可能在毛尖金发藓的耐脱水能力中发挥关键作用。在此,我们报告了毛尖金发藓在脱水和复水过程中的4D无标记高分辨率动态蛋白质组学和磷酸蛋白质组学分析,可对2854种蛋白质和1177种磷酸化蛋白质进行定量,其中包括1447种差异表达蛋白质(DEP)和699种差异磷酸化蛋白质(DPP)。在磷酸化蛋白质中,36.5%的蛋白质丰度发生了变化。蛋白质组学和磷酸蛋白质组学的变化涉及到的蛋白质(DEP和DPP)在脱水过程中主要参与光合作用、谷胱甘肽代谢、柠檬酸循环以及次生代谢途径的生物合成。在复水过程中,DEP和DPP主要与核糖体和能量代谢相关的过程有关。总之,在脱水过程中,磷酸化主要调节信号转导和代谢过程,使植物能够适应水分流失。在复水过程中,磷酸化控制修复和恢复机制,恢复代谢活性并重新建立细胞功能。参与谷胱甘肽代谢的蛋白质ScDHAR1在两个丝氨酸位点(S29和S218)因脱水而发生差异磷酸化。进一步分析表明,ScDHAR1中S29/S218的磷酸化显著提高了其酶活性,从而在原位增强了毛尖金发藓的耐脱水能力。这项工作建立了一个耐脱水苔藓的磷酸化蛋白质数据库。这些发现不仅拓宽了我们对毛尖金发藓耐脱水能力的理解,还填补了耐脱水苔藓磷酸蛋白质组学领域的知识空白,同时为未来的相关研究提供了有价值的数据资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验