Suppr超能文献

使用优化的无细胞蛋白质合成平台快速筛选塑料降解酶

Rapid Screening of Plastic-Degrading Enzymes Using an Optimized Cell-Free Protein Synthesis Platform.

作者信息

Yi SangKu, Park Junhyeon, Park Jiyoung, Kim Kyung-Jin, Kim Juhyun

机构信息

School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.

出版信息

J Microbiol Biotechnol. 2025 Jul 14;35:e2503044. doi: 10.4014/jmb.2503.03044.

Abstract

The accumulation of plastic waste poses a significant environmental challenge, necessitating the development of efficient plastic-degrading enzymes for bioremediation and recycling. However, traditional enzyme engineering approaches rely on microbial expression systems and are time-consuming and prone to unintended interactions between host cells and recombinant circuits. To address these limitations, a cell-free protein synthesis (CFPS) platform was developed for rapidly screening plastic-degrading enzymes. Using CFPS, cutinase and PET-degrading enzymes (PETases) were successfully synthesized, and their catalytic activities were assessed using polymer-containing agar plates. Clear degradation halos were observed for cutinase and PETase on polycaprolactone (PCL)-containing and bis (2-hydroxyethyl) terephthalate (BHET)-containing plates, respectively. The optimization of CFPS conditions revealed that enzyme synthesis efficacy was higher at room temperature than at 37°C. The screening of PETase variants (C3 N1377, Mipa-P, and C5 N1251), synthesized using the CFPS platform, demonstrated that the catalytic activity of Mipa-P was the highest and surpassed that of IsPETase. This finding was further validated through purified enzyme analysis. Our results establish CFPS as a rapid, scalable, and cell-free alternative platform for screening and optimizing plastic-degrading enzymes, facilitating advancements in enzymatic plastic recycling.

摘要

塑料垃圾的积累对环境构成了重大挑战,因此需要开发高效的塑料降解酶用于生物修复和回收利用。然而,传统的酶工程方法依赖于微生物表达系统,既耗时又容易出现宿主细胞与重组回路之间的意外相互作用。为了解决这些局限性,开发了一种无细胞蛋白质合成(CFPS)平台用于快速筛选塑料降解酶。利用CFPS成功合成了角质酶和聚对苯二甲酸乙二醇酯降解酶(PET酶),并使用含聚合物的琼脂平板评估了它们的催化活性。在含聚己内酯(PCL)的平板和含双(2-羟乙基)对苯二甲酸酯(BHET)的平板上,分别观察到角质酶和PET酶产生了清晰的降解晕圈。CFPS条件的优化表明,酶合成效率在室温下高于37°C。使用CFPS平台合成的PET酶变体(C3 N1377、Mipa-P和C5 N1251)的筛选表明,Mipa-P的催化活性最高,超过了IsPETase。这一发现通过纯化酶分析得到了进一步验证。我们的结果确立了CFPS作为一种快速、可扩展的无细胞替代平台,用于筛选和优化塑料降解酶,推动酶促塑料回收利用的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc97/12283258/651ea2dec8ad/jmb-35-e2503044-f1.jpg

相似文献

1
Rapid Screening of Plastic-Degrading Enzymes Using an Optimized Cell-Free Protein Synthesis Platform.
J Microbiol Biotechnol. 2025 Jul 14;35:e2503044. doi: 10.4014/jmb.2503.03044.
2
Efficient secretion of a plastic degrading enzyme from the green algae Chlamydomonas reinhardtii.
Sci Rep. 2025 Jul 9;15(1):24690. doi: 10.1038/s41598-025-09100-0.
3
Molecular mechanisms of plastic biodegradation by the fungus .
mBio. 2025 Jun 30:e0033525. doi: 10.1128/mbio.00335-25.
4
Polyethylene terephthalate (PET) primary degradation products affect c-di-GMP-, cAMP-signaling, and quorum sensing (QS) in DSM 21264.
Microbiol Spectr. 2025 Jul;13(7):e0018125. doi: 10.1128/spectrum.00181-25. Epub 2025 Jun 9.
5
Enzymatic polyethylene terephthalate degradation using a genetically stabilized cutinase immobilized on magnetic nanoparticles.
J Environ Manage. 2025 Aug;389:126269. doi: 10.1016/j.jenvman.2025.126269. Epub 2025 Jun 19.
7
Identified sp. nov. and its novel PET-degrading enzyme derived from mangrove plastic debris.
Appl Environ Microbiol. 2025 Aug 20;91(8):e0113625. doi: 10.1128/aem.01136-25. Epub 2025 Jul 24.
8
Enzymatic degradation of PET by hydrolase from Brucella intermedia IITR130 and its genomic insights.
Biodegradation. 2025 May 17;36(3):45. doi: 10.1007/s10532-025-10141-5.

本文引用的文献

1
Landscape profiling of PET depolymerases using a natural sequence cluster framework.
Science. 2025 Jan 3;387(6729):eadp5637. doi: 10.1126/science.adp5637.
2
Supramolecular protein assembly in cell-free protein synthesis system.
Bioresour Bioprocess. 2022 Mar 21;9(1):28. doi: 10.1186/s40643-022-00520-8.
3
Future focuses of enzymatic plastic degradation.
Trends Microbiol. 2023 Jul;31(7):668-671. doi: 10.1016/j.tim.2023.04.002. Epub 2023 Apr 28.
4
Current Prospects for Plastic Waste Treatment.
Polymers (Basel). 2022 Jul 31;14(15):3133. doi: 10.3390/polym14153133.
5
Enhancement of PET biodegradation by anchor peptide-cutinase fusion protein.
Enzyme Microb Technol. 2022 May;156:110004. doi: 10.1016/j.enzmictec.2022.110004. Epub 2022 Feb 2.
6
Exploring the global metagenome for plastic-degrading enzymes.
Methods Enzymol. 2021;648:137-157. doi: 10.1016/bs.mie.2020.12.022. Epub 2021 Jan 20.
7
Global analysis of protein stability by temperature and chemical denaturation.
Anal Biochem. 2020 Sep 15;605:113863. doi: 10.1016/j.ab.2020.113863. Epub 2020 Jul 29.
8
Biocatalytic recycling of polyethylene terephthalate plastic.
Philos Trans A Math Phys Eng Sci. 2020 Jul 24;378(2176):20190273. doi: 10.1098/rsta.2019.0273. Epub 2020 Jul 6.
9
Protein engineering strategies for microbial production of isoprenoids.
Metab Eng Commun. 2020 May 16;11:e00129. doi: 10.1016/j.mec.2020.e00129. eCollection 2020 Dec.
10
Cell-Free Protein Synthesis: A Promising Option for Future Drug Development.
BioDrugs. 2020 Jun;34(3):327-348. doi: 10.1007/s40259-020-00417-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验