Kasatkina Ludmila A, Ma Chenshuo, Sheng Huaxin, Lowerison Matthew, Menozzi Luca, Baloban Mikhail, Tang Yuqi, Xu Yirui, Humayun Lucas, Vu Tri, Song Pengfei, Yao Junjie, Verkhusha Vladislav V
Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA.
Nat Commun. 2025 Jul 14;16(1):6469. doi: 10.1038/s41467-025-61532-4.
Performance of near-infrared probes and optogenetic tools derived from bacterial phytochromes is limited by availability of their biliverdin chromophore. To address this, we use a biliverdin reductase-A knock-out mouse model (Blvra), which elevates endogenous biliverdin levels. We show that Blvra⁻/⁻ significantly enhances function of bacterial phytochrome-based systems. Light-controlled transcription using iLight optogenetic tool improves ~25-fold in Blvra cells, compared to wild-type controls, and achieves ~100-fold activation in neurons. Light-induced insulin production in Blvra mice reduces blood glucose by ~60% in diabetes model. To overcome depth limitations in imaging, we employ 3D photoacoustic, ultrasound, and two-photon fluorescence microscopy. This enables simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of brain vasculature at depths of ~7 mm through intact scalp and skull. Two-photon microscopy achieves cellular resolution of miRFP720-expressing neurons at ~2.2 mm depth. Overall, Blvra model represents powerful platform for improving efficacy of biliverdin-dependent tools for deep-tissue imaging and optogenetic manipulation.
源自细菌光敏色素的近红外探针和光遗传学工具的性能受到其胆绿素发色团可用性的限制。为了解决这个问题,我们使用了一种胆绿素还原酶-A基因敲除小鼠模型(Blvra),该模型可提高内源性胆绿素水平。我们发现,与野生型对照相比,Blvra⁻/⁻显著增强了基于细菌光敏色素的系统的功能。使用iLight光遗传学工具进行的光控转录在Blvra细胞中比野生型对照提高了约25倍,在神经元中实现了约100倍的激活。在糖尿病模型中,Blvra小鼠中光诱导的胰岛素产生使血糖降低了约60%。为了克服成像中的深度限制,我们采用了三维光声、超声和双光子荧光显微镜。这使得能够通过完整的头皮和颅骨在约7毫米深度处同时对神经元中的DrBphP进行光声成像以及对脑血管进行超分辨率超声定位显微镜成像。双光子显微镜在约2.2毫米深度处实现了对表达miRFP720的神经元的细胞分辨率成像。总体而言,Blvra模型是一个强大的平台,可用于提高依赖胆绿素的工具在深部组织成像和光遗传学操作方面的功效。