Lu Lisha, Sun Muhua, Zhi Aomiao, Ling Hao, Lan Yingying, Han Hongbo, Wang Jianlin, Zhang Xiaowei, Zhao Yu, Li Meiyun, Cai Lejuan, Li Xiaomin, Bai Xuedong, Wang Wenlong
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
Nat Commun. 2025 Jul 14;16(1):6479. doi: 10.1038/s41467-025-61872-1.
Nanoscale metal/semiconductor heterostructures are critical components for a variety of light energy conversion applications. Herein, with plasmonic hafnium nitride (HfN) as a model system, we show that spinodal decomposition can be exploited as a unique means to produce the lattice-coherent metal/semiconductor heterostructure between HfN and its native oxynitride semiconductor-HfON. Atomic-resolution electron microscopy imaging provides direct visualization of the complete lattice coherency over the interface region with precisely controlled spatial modulation. The light-harvesting HfN component exhibits a broadband plasmonic absorption covering visible and near-infrared regions, and the plasmonically excited hot electrons can be efficiently injected into neighboring HfON across interface. When combined with a small amount of Pt co-catalyst, the coherent HfN/HfON heterostructure achieves high-efficiency photocatalytic H production from methanol decomposition under visible and NIR light illumination, with apparent quantum yields of 27% at 600 nm and 13.9% at 850 nm, respectively. This performance contributes to the efficient utilization of a broad solar spectrum in photocatalysis and solar energy conversion applications.
纳米级金属/半导体异质结构是多种光能转换应用的关键组件。在此,以等离子体氮化铪(HfN)为模型系统,我们表明旋节线分解可作为一种独特方法,用于在HfN与其原生氮氧化物半导体HfON之间制备晶格相干的金属/半导体异质结构。原子分辨率电子显微镜成像提供了在具有精确控制空间调制的界面区域上完整晶格相干性的直接可视化。光捕获HfN组件表现出覆盖可见光和近红外区域的宽带等离子体吸收,并且等离子体激发的热电子可以通过界面有效地注入到相邻的HfON中。当与少量Pt助催化剂结合时,相干的HfN/HfON异质结构在可见光和近红外光照射下实现了从甲醇分解中高效光催化产氢,在600nm处的表观量子产率为27%,在850nm处为13.9%。这种性能有助于在光催化和太阳能转换应用中高效利用宽广的太阳光谱。