Poddiakov Ivan, Umerenkov Dmitriy, Shulcheva Irina, Golovina Victoria, Borisova Vasilina, Pozdnyakova-Filatova Irina, Loktyushov Evgeniy, Zubkova Galina, Savchenko Andrey, Ulitin Andrei, Blinov Pavel
Sber AI Lab, Moscow, 117997, Russia.
AIRI, Moscow, 123100, Russia.
Sci Rep. 2025 Jul 14;15(1):25412. doi: 10.1038/s41598-025-10241-5.
The 4-1BB receptor, a key member of the tumor necrosis factor receptor (TNFR) family, represents a highly promising target for cancer immunotherapy. In this study, we developed a novel in silico pipeline to design VHH domain antibodies targeting 4-1BB, leveraging knowledge-based amino acid distributions to generate optimized complementarity-determining region (CDR) sequences. Our computational approach progressively refined nanobody binding properties, yielding designs with binding scores comparable to or exceeding those of an established reference nanobody. From an initial set of 80 top-ranked de novo sequences, 65 were successfully assembled, with 35 validated by sequencing. Although this screening round did not yield a high-affinity binder in vitro, the results provide critical insights into the relationship between initial design parameters and successful genetic assembly. These findings highlight the potential of our pipeline while identifying key areas for further refinement, particularly in optimizing deep-learning models for antibody development. This work advances the broader effort to harness computational design for high-precision therapeutic antibody discovery.
4-1BB受体是肿瘤坏死因子受体(TNFR)家族的关键成员,是癌症免疫治疗中极具潜力的靶点。在本研究中,我们开发了一种新型的计算机辅助流程,用于设计靶向4-1BB的VHH结构域抗体,利用基于知识的氨基酸分布来生成优化的互补决定区(CDR)序列。我们的计算方法逐步优化了纳米抗体的结合特性,得到的设计结合分数与已建立的参考纳米抗体相当或更高。从最初的80个排名靠前的从头设计序列中,成功组装了65个,其中35个通过测序验证。虽然这一轮筛选在体外没有产生高亲和力结合剂,但结果为初始设计参数与成功基因组装之间的关系提供了关键见解。这些发现突出了我们流程的潜力,同时确定了需要进一步优化的关键领域,特别是在优化用于抗体开发的深度学习模型方面。这项工作推动了利用计算设计进行高精度治疗性抗体发现的更广泛努力。