Suppr超能文献

基于生成扩散模型的人工智能驱动抗体设计:当前见解与未来方向。

AI-driven antibody design with generative diffusion models: current insights and future directions.

作者信息

He Xin-Heng, Li Jun-Rui, Xu James, Shan Hong, Shen Shi-Yi, Gao Si-Han, Xu H Eric

机构信息

State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Acta Pharmacol Sin. 2025 Mar;46(3):565-574. doi: 10.1038/s41401-024-01380-y. Epub 2024 Sep 30.

Abstract

Therapeutic antibodies are at the forefront of biotherapeutics, valued for their high target specificity and binding affinity. Despite their potential, optimizing antibodies for superior efficacy presents significant challenges in both monetary and time costs. Recent strides in computational and artificial intelligence (AI), especially generative diffusion models, have begun to address these challenges, offering novel approaches for antibody design. This review delves into specific diffusion-based generative methodologies tailored for antibody design tasks, de novo antibody design, and optimization of complementarity-determining region (CDR) loops, along with their evaluation metrics. We aim to provide an exhaustive overview of this burgeoning field, making it an essential resource for leveraging diffusion-based generative models in antibody design endeavors.

摘要

治疗性抗体处于生物治疗的前沿,因其高靶标特异性和结合亲和力而受到重视。尽管它们具有潜力,但要优化抗体以实现卓越疗效,在金钱和时间成本方面都面临重大挑战。计算和人工智能(AI)领域的最新进展,尤其是生成扩散模型,已开始应对这些挑战,为抗体设计提供了新方法。本文综述深入探讨了针对抗体设计任务、从头抗体设计和互补决定区(CDR)环优化的基于扩散的特定生成方法,以及它们的评估指标。我们旨在全面概述这一新兴领域,使其成为在抗体设计工作中利用基于扩散的生成模型的重要资源。

相似文献

4
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.人工智能驱动的抗菌肽发现:挖掘与生成
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.

本文引用的文献

1
Simulating 500 million years of evolution with a language model.用语言模型模拟5亿年的进化历程。
Science. 2025 Feb 21;387(6736):850-858. doi: 10.1126/science.ads0018. Epub 2025 Jan 16.
2
PD-1 Targeted Antibody Discovery Using AI Protein Diffusion.利用人工智能蛋白质扩散进行 PD-1 靶向抗体发现。
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241275947. doi: 10.1177/15330338241275947.
4
Diffusion models in bioinformatics and computational biology.生物信息学和计算生物学中的扩散模型。
Nat Rev Bioeng. 2024 Feb;2(2):136-154. doi: 10.1038/s44222-023-00114-9. Epub 2023 Oct 27.
8
Designing proteins with language models.利用语言模型设计蛋白质。
Nat Biotechnol. 2024 Feb;42(2):200-202. doi: 10.1038/s41587-024-02123-4.
10
Illuminating protein space with a programmable generative model.用可编程生成模型照亮蛋白质空间。
Nature. 2023 Nov;623(7989):1070-1078. doi: 10.1038/s41586-023-06728-8. Epub 2023 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验