Suppr超能文献

使用集成人工智能和基于物理学的方法发现选择性GluN1/GluN3A NMDA受体抑制剂。

Discovery of selective GluN1/GluN3A NMDA receptor inhibitors using integrated AI and physics-based approaches.

作者信息

Li Shi-Wei, Zeng Yue, Wu Sa-Nan, Ma Xin-Yue, Xu Chao, Li Zong-Quan, Fang Sui, Chen Xue-Qin, Gao Zhao-Bing, Bai Fang

机构信息

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

出版信息

Acta Pharmacol Sin. 2025 Jul 14. doi: 10.1038/s41401-025-01607-6.

Abstract

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels essential for synaptic transmission and plasticity in the central nervous system. GluN1/GluN3A, an unconventional NMDAR subtype functioning as an excitatory glycine receptor, has been implicated in mood regulation, with high expression in brain regions governing emotional and motivational states. However, therapeutic exploration has been significantly hindered by a lack of potent and selective modulators, limited structural data and the intrinsic complexity of ion channels. Here, we introduce a compound virtual screening pipeline that combines artificial intelligence and physical models, integrating two sequence-based deep learning prediction models (TEFDTA and ESMLigSite) with a molecular docking approach. This approach was employed to identify potential inhibitors against GluN1/GluN3A by screening a commercial database containing 18 million compounds. The strategy resulted in an impressive hit rate of 50% for discovering inhibitors, with the most promising compound exhibiting strong inhibitory activity (IC = 1.26 ± 0.23 μM) and remarkable target specificity (>23-fold selectivity over the GluN1/GluN2A receptor). These findings highlight the effectiveness of AI-assisted strategies in addressing challenges related to unconventional ion channels and pave the way for new therapeutic exploration.

摘要

N-甲基-D-天冬氨酸受体(NMDARs)是谷氨酸门控离子通道,对中枢神经系统的突触传递和可塑性至关重要。GluN1/GluN3A是一种非常规的NMDAR亚型,起兴奋性甘氨酸受体的作用,与情绪调节有关,在控制情绪和动机状态的脑区中高表达。然而,由于缺乏强效和选择性调节剂、有限的结构数据以及离子通道固有的复杂性,治疗探索受到了显著阻碍。在此,我们引入了一种化合物虚拟筛选流程,该流程结合了人工智能和物理模型,将两个基于序列的深度学习预测模型(TEFDTA和ESMLigSite)与分子对接方法相结合。通过筛选一个包含1800万种化合物的商业数据库,采用这种方法来鉴定针对GluN1/GluN3A的潜在抑制剂。该策略在发现抑制剂方面取得了令人印象深刻的50%的命中率,最有前景的化合物表现出强大的抑制活性(IC = 1.26±0.23 μM)和显著的靶点特异性(对GluN1/GluN2A受体的选择性超过23倍)。这些发现突出了人工智能辅助策略在应对与非常规离子通道相关挑战方面的有效性,并为新的治疗探索铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验