Zhang Pengxiang, Wang Qian, Zhang Yixin, Lin Mo, Zhou Xin, David Ashish, Ustyuzhanin Andrey, Chen Musen, Katsnelson Mikhail I, Trubyanov Maxim, Novoselov Kostya S, Andreeva Daria V
Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
Nat Nanotechnol. 2025 Jul 14. doi: 10.1038/s41565-025-01971-8.
Graphene oxide (GO) membranes offer high selectivity and energy-efficient gas separation. However, their dense, layered structure and tortuous diffusion paths limit permeability, posing a barrier to industrial use. Here we present a method to enhance selectivity and permeability, maintaining the structural stability of such membranes. With an industrially friendly manufacturing method, we produce crumpled GO membranes with gas diffusion pathways controlled by a multidomain structure. These membranes achieve H permeability of approximately 2.1 × 10 barrer, significantly surpassing the permeability of flat lamellar GO membranes, which is below 100 barrer. Its H/CO selectivity of 91 outperforms current membrane technologies. In addition, the crumpled membranes demonstrate stability under harsh conditions (-20 °C, 96% relative humidity), a critical requirement for practical applications. This work addresses the long-standing permeability-selectivity trade-off and establishes a robust, scalable platform for integrating two-dimensional materials into membrane technology for real-world applications.
氧化石墨烯(GO)膜具有高选择性和节能的气体分离性能。然而,其致密的层状结构和曲折的扩散路径限制了渗透率,对工业应用构成了障碍。在此,我们提出一种提高选择性和渗透率的方法,同时保持此类膜的结构稳定性。通过一种工业友好型制造方法,我们制备出具有多域结构控制气体扩散路径的皱缩GO膜。这些膜的氢气渗透率约为2.1×10巴耳,显著超过扁平层状GO膜低于100巴耳的渗透率。其氢气/一氧化碳选择性为91,优于当前的膜技术。此外,皱缩膜在苛刻条件(-20°C,96%相对湿度)下表现出稳定性,这是实际应用的关键要求。这项工作解决了长期存在的渗透率-选择性权衡问题,并建立了一个强大的、可扩展的平台,用于将二维材料集成到膜技术中以实现实际应用。