Suppr超能文献

应变诱导氧化石墨烯薄片起皱以实现氢和一氧化碳的快速选择性传输。

Strain-induced crumpling of graphene oxide lamellas to achieve fast and selective transport of H and CO.

作者信息

Zhang Pengxiang, Wang Qian, Zhang Yixin, Lin Mo, Zhou Xin, David Ashish, Ustyuzhanin Andrey, Chen Musen, Katsnelson Mikhail I, Trubyanov Maxim, Novoselov Kostya S, Andreeva Daria V

机构信息

Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.

Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.

出版信息

Nat Nanotechnol. 2025 Jul 14. doi: 10.1038/s41565-025-01971-8.

Abstract

Graphene oxide (GO) membranes offer high selectivity and energy-efficient gas separation. However, their dense, layered structure and tortuous diffusion paths limit permeability, posing a barrier to industrial use. Here we present a method to enhance selectivity and permeability, maintaining the structural stability of such membranes. With an industrially friendly manufacturing method, we produce crumpled GO membranes with gas diffusion pathways controlled by a multidomain structure. These membranes achieve H permeability of approximately 2.1 × 10 barrer, significantly surpassing the permeability of flat lamellar GO membranes, which is below 100 barrer. Its H/CO selectivity of 91 outperforms current membrane technologies. In addition, the crumpled membranes demonstrate stability under harsh conditions (-20 °C, 96% relative humidity), a critical requirement for practical applications. This work addresses the long-standing permeability-selectivity trade-off and establishes a robust, scalable platform for integrating two-dimensional materials into membrane technology for real-world applications.

摘要

氧化石墨烯(GO)膜具有高选择性和节能的气体分离性能。然而,其致密的层状结构和曲折的扩散路径限制了渗透率,对工业应用构成了障碍。在此,我们提出一种提高选择性和渗透率的方法,同时保持此类膜的结构稳定性。通过一种工业友好型制造方法,我们制备出具有多域结构控制气体扩散路径的皱缩GO膜。这些膜的氢气渗透率约为2.1×10巴耳,显著超过扁平层状GO膜低于100巴耳的渗透率。其氢气/一氧化碳选择性为91,优于当前的膜技术。此外,皱缩膜在苛刻条件(-20°C,96%相对湿度)下表现出稳定性,这是实际应用的关键要求。这项工作解决了长期存在的渗透率-选择性权衡问题,并建立了一个强大的、可扩展的平台,用于将二维材料集成到膜技术中以实现实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验