Suppr超能文献

基于多参数磁共振成像的机器学习模型预测2021年世界卫生组织4级胶质瘤的分子亚型

Predicting the molecular subtypes of 2021 WHO grade 4 glioma by a multiparametric MRI-based machine learning model.

作者信息

Xu Wenji, Li Yangyang, Zhang Jie, Zhang Zhiyi, Shen Pengxin, Wang Xiaochun, Yang Guoqiang, Du Jiangfeng, Zhang Hui, Tan Yan

机构信息

College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.

Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.

出版信息

BMC Cancer. 2025 Jul 14;25(1):1171. doi: 10.1186/s12885-025-14529-7.

Abstract

BACKGROUND

Accurately distinguishing the different molecular subtypes of 2021 World Health Organization (WHO) grade 4 Central Nervous System (CNS) gliomas is highly relevant for prognostic stratification and personalized treatment.

OBJECTIVES

To develop and validate a machine learning (ML) model using multiparametric MRI for the preoperative differentiation of astrocytoma, CNS WHO grade 4, and glioblastoma (GBM), isocitrate dehydrogenase-wild-type (IDH-wt) (WHO 2021) (Task 1:grade 4 vs. GBM); and to stratify astrocytoma, CNS WHO grade 4, by distinguish astrocytoma, IDH-mutant (IDH-mut), CNS WHO grade 4 from astrocytoma, IDH-wild-type (IDH-wt), CNS WHO grade 4 (Task 2:IDH-mut vs. IDH-wt ). Additionally, to evaluate the model's prognostic value.

METHODS

We retrospectively analyzed 320 glioma patients from three hospitals (training/testing, 7:3 ratio) and 99 patients from ‌The Cancer Genome Atlas (TCGA) database for external validation‌. Radiomic features were extracted from tumor and edema on contrast-enhanced T1-weighted imaging (CE-T1WI) and T2 fluid-attenuated inversion recovery (T2-FLAIR). Extreme gradient boosting (XGBoost) was utilized for constructing the ML, clinical, and combined models. Model performance was evaluated with receiver operating characteristic (ROC) curves, decision curves, and calibration curves. Stability was evaluated using six additional classifiers. Kaplan-Meier (KM) survival analysis and the log-rank test assessed the model's prognostic value.

RESULTS

In Task 1 and Task 2, the combined model (AUC = 0.907, 0.852 and 0.830 for Task 1; AUC = 0.899, 0.895 and 0.792 for Task 2) and the optimal ML model (AUC = 0.902, 0.854 and 0.832 for Task 1; AUC = 0.904, 0.899 and 0.783 for Task 2) significantly outperformed the clinical model (AUC = 0.671, 0.656, and 0.543 for Task 1; AUC = 0.619, 0.605 and 0.400 for Task 2) in both the training, testing and validation sets. Survival analysis showed the combined model performed similarly to molecular subtype in both tasks (p = 0.964 and p = 0.746).

CONCLUSION

The multiparametric MRI ML model effectively distinguished astrocytoma, CNS WHO grade 4 from GBM, IDH-wt (WHO 2021) and differentiated astrocytoma, IDH-mut from astrocytoma, IDH-wt, CNS WHO grade 4. Additionally, the model provided reliable survival stratification for glioma patients across different molecular subtypes.

摘要

背景

准确区分2021年世界卫生组织(WHO)4级中枢神经系统(CNS)胶质瘤的不同分子亚型对于预后分层和个性化治疗具有高度相关性。

目的

开发并验证一种使用多参数MRI的机器学习(ML)模型,用于术前鉴别4级星形细胞瘤、CNS WHO 4级和胶质母细胞瘤(GBM)、异柠檬酸脱氢酶野生型(IDH-wt)(WHO 2021)(任务1:4级与GBM);并通过区分4级IDH突变型(IDH-mut)星形细胞瘤与4级IDH野生型(IDH-wt)星形细胞瘤,对4级CNS星形细胞瘤进行分层(任务2:IDH-mut与IDH-wt)。此外,评估该模型的预后价值。

方法

我们回顾性分析了来自三家医院的320例胶质瘤患者(训练/测试,比例为7:3)以及来自癌症基因组图谱(TCGA)数据库的99例患者用于外部验证。从对比增强T1加权成像(CE-T1WI)和T2液体衰减反转恢复(T-2 FLAIR)上的肿瘤和水肿中提取放射组学特征。采用极端梯度提升(XGBoost)构建ML、临床和联合模型。使用受试者操作特征(ROC)曲线、决策曲线和校准曲线评估模型性能。使用另外六个分类器评估稳定性。采用Kaplan-Meier(KM)生存分析和对数秩检验评估模型的预后价值。

结果

在任务1和任务2中,联合模型(任务1的AUC分别为0.907、0.852和0.830;任务2的AUC分别为0.899、0.895和0.792)和最佳ML模型(任务1的AUC分别为0.902、0.854和0.832;任务2的AUC分别为0.904、0.899和0.783)在训练集、测试集和验证集中均显著优于临床模型(任务1的AUC分别为0.671、0.656和0.543;任务2的AUC分别为0.619、0.605和0.400)。生存分析表明,联合模型在两项任务中的表现与分子亚型相似(p = 0.964和p = 0.746)。

结论

多参数MRI ML模型有效地将4级CNS星形细胞瘤与IDH-wt的GBM(WHO 2021)区分开来,并将IDH-mut星形细胞瘤与4级IDH-wt星形细胞瘤区分开来。此外,该模型为不同分子亚型的胶质瘤患者提供了可靠的生存分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验