Suppr超能文献

适应性密度泛函紧束缚方法3(Adapted DFTB3)排斥势在酶催化的氢化物转移反应中达到密度泛函理论(DFT)精度。

Adapted DFTB3 Repulsive Potentials Reach DFT Accuracy for Hydride Transfer Reactions in Enzymes.

作者信息

Velázquez-Libera José Luís, Recabarren Rodrigo, Saez David Adrian, Castillo Carlos, Ruiz-Pernía J Javier, Tuñón Iñaki, Vöhringer-Martinez Esteban

机构信息

Departamento de Química Física, Universitat de Valencia, Valencia, Spain.

Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile.

出版信息

J Comput Chem. 2025 Jul 15;46(19):e70174. doi: 10.1002/jcc.70174.

Abstract

Enzymatic hydride transfer reactions play a crucial role in numerous metabolic pathways, yet their accurate computational modeling remains challenging due to the trade-off between accuracy and computational efficiency. Ideally, molecular dynamics simulations should sample all enzyme configurations along the reaction path using post-Hartree-Fock or DFT QM/MM electrostatic embedding methods, but these are computationally expensive. Here, we introduce a simple approach to improve the third-order density functional tight binding (DFTB3) semi-empirical method to model hydride transfer reactions in enzymes. We identified deficiencies in DFTB3's description of the potential energy surface for the hydride transfer step in Crotonyl-CoA Carboxylase/Reductase (Ccr) and developed a systematic methodology to address these limitations. Our approach involves modifying DFTB3's repulsive potential functions using linear combinations of harmonic functions, guided by analysis of C-H and C-C distance distributions along the reaction path. The optimized DFTB3 Hamiltonian significantly improved the description of the hydride transfer reaction in Ccr, reproducing the reference DFT activation barrier within 0.1 kcal/mol. We also addressed the transferability of our method by applying it to another hydride transfer reaction bearing the 1,4-dihydropyridine motif but exhibiting distinct structural features of the reactant, as well as the hydride transfer reaction in Dihydrofolate Reductase (DHFR). In both cases, our adapted DFTB3 Hamiltonian correctly reproduced the DFT reference and experimentally observed activation barriers. The low computational cost and transferability of our method will enable more accurate and efficient QM/MM molecular dynamics simulations of hydride transfer reactions, potentially accelerating research in enzyme engineering and drug design.

摘要

酶促氢化物转移反应在众多代谢途径中起着关键作用,然而由于准确性和计算效率之间的权衡,其精确的计算建模仍然具有挑战性。理想情况下,分子动力学模拟应使用后哈特里 - 福克或密度泛函理论(DFT)的量子力学/分子力学(QM/MM)静电嵌入方法对反应路径上的所有酶构型进行采样,但这些方法计算成本高昂。在此,我们引入一种简单方法来改进三阶密度泛函紧束缚(DFTB3)半经验方法,以模拟酶中的氢化物转移反应。我们发现DFTB3在巴豆酰辅酶A羧化酶/还原酶(Ccr)的氢化物转移步骤势能面描述方面存在不足,并开发了一种系统方法来解决这些限制。我们的方法包括利用反应路径上C - H和C - C距离分布的分析,通过谐波函数的线性组合修改DFTB3的排斥势函数。优化后的DFTB3哈密顿量显著改善了Ccr中氢化物转移反应的描述,在0.1千卡/摩尔范围内重现了参考DFT活化能垒。我们还通过将其应用于另一个带有1,4 - 二氢吡啶基序但反应物具有不同结构特征的氢化物转移反应以及二氢叶酸还原酶(DHFR)中的氢化物转移反应,探讨了我们方法的可转移性。在这两种情况下,我们改进的DFTB3哈密顿量都正确地重现了DFT参考值和实验观察到的活化能垒。我们方法的低计算成本和可转移性将使氢化物转移反应的QM/MM分子动力学模拟更加准确和高效,有可能加速酶工程和药物设计的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验