Suppr超能文献

用于质子铅笔束束斑轮廓测定的存储磷光体成像系统的研制。

Development of a storage phosphor imaging system for proton pencil beam spot profile determination.

机构信息

Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.

Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

Med Phys. 2021 Sep;48(9):5459-5471. doi: 10.1002/mp.15139. Epub 2021 Aug 10.

Abstract

PURPOSE

Accurate two-dimensional (2D) profile measurements at submillimeter precision are necessary for proton beam commissioning and periodic quality assurance (QA) purposes and are currently performed at our institution with a commercial scintillation detector (Lynx PT) with limited means for independent checks. The purpose of this work was to create an independent dosimetry system consisting of an in-house optical scanner and a BaFBrI:Eu storage phosphor dosimeter by: (a) determining the optimal settings for the optical scanner, (b) measuring 2D proton spot profiles with the storage phosphors, and (c) comparing them to similar measurements using a commercial scintillation detector.

METHODS

An in-house 2D laboratory optical scanner was constructed and spatially calibrated for accurate 2D photostimulated luminescence (PSL) dosimetry. Square 5 × 5 cm BaFBrI:Eu dosimeter samples were uniformly irradiated with line scans performed to determine the physical and electronic scanner settings resulting in the highest signal-to-noise ratios (SNR) at a sub-millimeter spatial resolution. The resultant spatial resolution of the scanner was then quantitatively assessed by measuring (a) line pairs on a standard X-ray lead bar phantom and (b) modulation transfer functions. Following this, 2D proton spot profiles from a Mevion S250i Hyperscan proton unit were obtained at 1, 10, 20, 30, 40, and 50 monitor unit (MU) settings at maximum energy (E  = 227.1 MeV) and compared to baseline profiles from a commercial scintillation detector, where 1 MU is calibrated to deliver 1 Gy absolute proton dose-to-water under reference conditions, that is, 41 × 41 proton spots uniformly spaced by 0.25 cm within a 10 × 10 cm square field size at maximum energy (227.1 MeV) in water at depth of 5 cm at isocenter. The dosimetric system's sensitivities to (a) ±1 mm positional shifts and (b) ±0.3 mm beam lateral spread changes were quantitatively evaluated through a Gaussian fitting of the crossline and inline plots of the respective artificially shifted beam profiles.

RESULTS

The physical scanner settings of (a) Δτ = 27 ms time interval between data samples, (b) v  = 1.235 cm/s scanning speed, (c) 1% laser transmission (0.02 mW power) and (d) (Δx, Δy) = (0.33, 0.50 mm) pixel sizes with electronic settings of (a) 300 microseconds time constant, (b) normal dynamic reserve, (c) 24 dB/oct low pass filter slope, and (d) 160 Hz chopping frequency resulted in the highest SNR while maintaining sub-millimeter spatial resolution. The BaFBr I :Eu storage phosphor dosimeters were linear from 1 to 50 MU and their profiles did not saturate up to 150 MU. The scanner was able to detect lateral displacements of ±1 mm in both the crossline and inline directions and ±0.3 mm beam spread changes that were artificially introduced by varying the incident proton energy. Specific to our proton unit, proton energy changes of ±1 MeV can also be detected indirectly via beam spread measurements.

CONCLUSION

Our combined dosimetric system including an in-house laboratory optical scanner and reusable BaFBr I :Eu storage phosphors demonstrated a sufficient spatial resolution and dosimetric accuracy to support its use as an independent proton spot measurement dosimeter system. Its wide dynamic range allows for other versatile applications such as proton halo measurements.

摘要

目的

在亚毫米精度下进行准确的二维(2D)轮廓测量对于质子束调试和定期质量保证(QA)目的是必要的,并且目前在我们机构使用具有有限独立检查手段的商业闪烁探测器(Lynx PT)进行。本工作的目的是通过以下方式创建一个由内部光学扫描仪和 BaFBrI:Eu 存储磷光体剂量计组成的独立剂量计系统:(a)确定光学扫描仪的最佳设置,(b)使用存储磷光体测量 2D 质子光斑轮廓,以及(c)将其与使用商业闪烁探测器进行的类似测量进行比较。

方法

构建了一个内部 2D 实验室光学扫描仪,并对其进行了空间校准,以进行精确的二维光激励发光(PSL)剂量测定。使用线扫描均匀照射 5×5 cm BaFBrI:Eu 剂量计样品,以确定在亚毫米空间分辨率下产生最高信噪比(SNR)的物理和电子扫描仪设置。然后,通过测量(a)标准 X 射线铅条体模上的线对和(b)调制传递函数来定量评估扫描仪的空间分辨率。在此之后,在最大能量(E=227.1 MeV)下,从 Mevion S250i Hyperscan 质子单元获得 1、10、20、30、40 和 50 个监视器单位(MU)设置的 2D 质子光斑轮廓,并与商用闪烁探测器的基线轮廓进行比较,其中 1 MU 被校准为在参考条件下提供 1 Gy 的绝对质子水剂量,即在最大能量(227.1 MeV)下,在水深为 5 cm 的水中心处,41×41 个质子光斑均匀间隔 0.25 cm,在 10×10 cm 的正方形射野尺寸内。通过高斯拟合相应的人为移位光束轮廓的横线和内线图,定量评估了该剂量计系统对(a)±1 mm 位置偏移和(b)±0.3 mm 光束横向扩展变化的灵敏度。

结果

物理扫描仪的设置为(a)数据样本之间的 Δτ=27 ms 时间间隔,(b)v=1.235 cm/s 扫描速度,(c)1%激光透射率(0.02 mW 功率)和(d)(Δx,Δy)=(0.33,0.50 mm)像素尺寸,以及电子设置为(a)300 微秒时间常数,(b)正常动态储备,(c)24 dB/oct 低通滤波器斜率,以及(d)160 Hz 斩波频率,在保持亚毫米空间分辨率的同时,获得了最高 SNR。BaFBr I:Eu 存储磷光体剂量计在 1 至 50 MU 之间呈线性,其轮廓在高达 150 MU 时不会饱和。扫描仪能够检测到±1 mm 的横向位移,以及通过改变入射质子能量人为引入的±0.3 mm 光束扩展变化,在横线和内线方向均能检测到。具体到我们的质子单元,通过光束扩展测量也可以间接检测到±1 MeV 的质子能量变化。

结论

我们的组合剂量计系统包括内部实验室光学扫描仪和可重复使用的 BaFBr I:Eu 存储磷光体,具有足够的空间分辨率和剂量测定精度,可以支持其作为独立的质子光斑测量剂量计系统使用。其宽动态范围允许其他各种应用,例如质子晕测量。

相似文献

1
Development of a storage phosphor imaging system for proton pencil beam spot profile determination.
Med Phys. 2021 Sep;48(9):5459-5471. doi: 10.1002/mp.15139. Epub 2021 Aug 10.
2
Dual-storage phosphor proton therapy dosimetry: Simultaneous quantification of dose and linear energy transfer.
Med Phys. 2021 Apr;48(4):1941-1955. doi: 10.1002/mp.14748. Epub 2021 Feb 19.
3
Quantitative proton radiation therapy dosimetry using the storage phosphor europium-doped potassium chloride.
Med Phys. 2020 Oct;47(10):5287-5300. doi: 10.1002/mp.14423. Epub 2020 Aug 16.

本文引用的文献

1
Dual-storage phosphor proton therapy dosimetry: Simultaneous quantification of dose and linear energy transfer.
Med Phys. 2021 Apr;48(4):1941-1955. doi: 10.1002/mp.14748. Epub 2021 Feb 19.
2
Clinical commissioning of intensity-modulated proton therapy systems: Report of AAPM Task Group 185.
Med Phys. 2021 Jan;48(1):e1-e30. doi: 10.1002/mp.14546. Epub 2020 Nov 17.
3
Quantitative proton radiation therapy dosimetry using the storage phosphor europium-doped potassium chloride.
Med Phys. 2020 Oct;47(10):5287-5300. doi: 10.1002/mp.14423. Epub 2020 Aug 16.
5
Nuclear halo measurements for accurate prediction of field size factor in a Varian ProBeam proton PBS system.
J Appl Clin Med Phys. 2020 Jan;21(1):197-204. doi: 10.1002/acm2.12783. Epub 2019 Dec 2.
6
AAPM task group 224: Comprehensive proton therapy machine quality assurance.
Med Phys. 2019 Aug;46(8):e678-e705. doi: 10.1002/mp.13622. Epub 2019 Jun 14.
7
Intensity modulated proton therapy (IMPT) - The future of IMRT for head and neck cancer.
Oral Oncol. 2019 Jan;88:66-74. doi: 10.1016/j.oraloncology.2018.11.015. Epub 2018 Nov 21.
8
Storage Phosphors for Medical Imaging.
Materials (Basel). 2011 Jun 9;4(6):1034-1086. doi: 10.3390/ma4061034.
9
Characterization of a commercial scintillation detector for 2-D dosimetry in scanned proton and carbon ion beams.
Phys Med. 2017 Feb;34:48-54. doi: 10.1016/j.ejmp.2017.01.011. Epub 2017 Jan 22.
10
Commissioning and initial experience with the first clinical gantry-mounted proton therapy system.
J Appl Clin Med Phys. 2016 Mar 8;17(2):24-40. doi: 10.1120/jacmp.v17i2.5868.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验