Chen Hongyi, Song Haiyang, Huang Hongyu, Fang Xiaojun, Chen Huang, Yang Qingqing, Zhang Junyu, Ding Wenjun, Gong Zheng, Ke Jun
Fujian Provincial Hospital, Department of Emergency, Fuzhou, China.
Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
Front Physiol. 2025 Jun 30;16:1594277. doi: 10.3389/fphys.2025.1594277. eCollection 2025.
High-risk chest pain is a critical presentation in emergency departments, frequently indicative of life-threatening cardiopulmonary conditions. Rapid and accurate diagnosis is pivotal for improving patient survival rates.
We developed a machine learning prediction model using the MIMIC-IV database (n = 14,716 patients, including 1,302 high-risk cases). To address class imbalance, we implemented feature engineering with SMOTE and under-sampling techniques. Model optimization was performed via Bayesian hyperparameter tuning. Seven algorithms were evaluated: Logistic Regression, Random Forest, SVM, XGBoost, LightGBM, TabTransformer, and TabNet.
The LightGBM model demonstrated superior performance with accuracy = 0.95, precision = 0.95, recall = 0.95, and F1-score = 0.94. SHAP analysis revealed maximum troponin and creatine kinase-MB levels as the top predictive features.
Our optimized LightGBM model provides clinically significant predictive capability for high-risk chest pain, offering emergency physicians a decision-support tool to enhance diagnostic accuracy and patient outcomes.
高危胸痛是急诊科的一种危急表现,常提示危及生命的心肺疾病。快速准确的诊断对于提高患者生存率至关重要。
我们使用MIMIC-IV数据库(n = 14,716例患者,包括1,302例高危病例)开发了一种机器学习预测模型。为了解决类别不平衡问题,我们采用SMOTE和欠采样技术进行特征工程。通过贝叶斯超参数调整进行模型优化。评估了七种算法:逻辑回归、随机森林、支持向量机、XGBoost、LightGBM、TabTransformer和TabNet。
LightGBM模型表现出卓越的性能,准确率= 0.95,精确率= 0.95,召回率= 0.95,F1分数= 0.94。SHAP分析显示最大肌钙蛋白和肌酸激酶-MB水平是首要预测特征。
我们优化的LightGBM模型为高危胸痛提供了具有临床意义的预测能力,为急诊医生提供了一种决策支持工具,以提高诊断准确性和患者预后。