Liu Yi, Xu Yehua, Guo Lixia, Chen Zhongbin, Xia Xueqin, Chen Feng, Tang Li, Jiang Hua, Xie Caixia
Department of Nursing, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Department of Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
BMC Med Inform Decis Mak. 2025 Jul 3;25(1):248. doi: 10.1186/s12911-025-03082-9.
Early detection of malnutrition in critically ill patients is crucial for timely intervention and improved clinical outcomes. However, identifying individuals at risk remains challenging due to the complexity and variability of patient conditions. This study aimed to develop and externally validate machine learning models for predicting malnutrition within 24 h of intensive care unit (ICU) admission, culminating in a web-based malnutrition prediction tool for clinical decision support.
A total of 1006 critically ill adult patients (aged ≥ 18 years) were included in the model development group, and 300 adult patients comprised the external validation group. The development data were partitioned into training (80%) and testing (20%) sets. Hyperparameters were optimized via 5-fold cross-validation on the training set, eliminating the need for a separate validation set while ensuring internal validation. External validation was performed on an independent group to assess generalizability. Predictors were selected using random forest recursive feature elimination; seven machine learning models-Extreme Gradient Boosting (XGBoost), random forest, decision tree, support vector machine (SVM), Gaussian naive Bayes, k-nearest neighbor (k-NN), and logistic regression-were trained and evaluated for accuracy, precision, recall, F1 score, Area Under the Receiver Operating Characteristic Curve (AUC-ROC), Area Under the Precision-Recall Curve (AUC-PR). Model interpretability was analyzed using SHapley Additive exPlanations (SHAP) to quantify feature contributions.
In the development phase, among 1006 patients, 34.0% had moderate malnutrition and 17.9% severe malnutrition. The XGBoost model achieved superior predictive accuracy with an accuracy of 0.90 (95% CI = 0.86-0.94), precision of 0.92 (95% CI = 0.88-0.95), recall of 0.92 (95% CI = 0.89-0.95), F1 score of 0.92 (95% CI = 0.89-0.95), AUC-ROC of 0.98 (95% CI = 0.96-0.99), and AUC-PR of 0.97 (95% CI = 0.95-0.99) on the testing set. External validation confirmed robust performance with an accuracy of 0.75 (95% CI: 0.70-0.79), precision of 0.79 (95% CI: 0.75-0.83), recall of 0.75 (95% CI: 0.70-0.79), F1 score of 0.74 (95% CI: 0.69-0.78), AUC-ROC of 0.88 (95% CI: 0.86-0.91), and AUC-PR of 0.77 (95% CI: 0.73-0.80).
Machine learning models, particularly XGBoost, demonstrated promising performance in early malnutrition prediction in ICU settings. The resultant web-based tool offers valuable resource for clinical decision support.
Chinese Clinical Trial Registry ChiCTR2200058286 ( https://www.chictr.org.cn/bin/project/edit? pid=248690 ). Registered 4th April 2022. Prospectively registered.
危重症患者营养不良的早期检测对于及时干预和改善临床结局至关重要。然而,由于患者病情的复杂性和变异性,识别有风险的个体仍然具有挑战性。本研究旨在开发并外部验证用于预测重症监护病房(ICU)入院24小时内营养不良的机器学习模型,最终形成一个基于网络的营养不良预测工具以支持临床决策。
共有1006例成年危重症患者(年龄≥18岁)纳入模型开发组,300例成年患者组成外部验证组。将开发数据分为训练集(80%)和测试集(20%)。通过在训练集上进行5折交叉验证来优化超参数,无需单独的验证集即可确保内部验证。在独立组上进行外部验证以评估模型的泛化能力。使用随机森林递归特征消除法选择预测变量;训练并评估了7种机器学习模型——极端梯度提升(XGBoost)、随机森林、决策树、支持向量机(SVM)、高斯朴素贝叶斯、k近邻(k-NN)和逻辑回归——的准确性、精确率、召回率、F1分数、受试者工作特征曲线下面积(AUC-ROC)、精确率-召回率曲线下面积(AUC-PR)。使用SHapley加性解释(SHAP)分析模型可解释性以量化特征贡献。
在开发阶段,1006例患者中,34.0%患有中度营养不良,17.9%患有重度营养不良。XGBoost模型在测试集上表现出卓越的预测准确性,准确率为0.90(95%CI=0.86-0.94),精确率为0.92(95%CI=0.88-0.95),召回率为0.92(95%CI=0.89-0.95),F1分数为0.92(95%CI=0.89-0.95),AUC-ROC为0.98(95%CI=0.96-0.99),AUC-PR为0.97(95%CI=0.95-0.99)。外部验证证实了该模型的稳健性能,准确率为0.75(95%CI:0.70-0.79),精确率为0.79(95%CI:0.75-0.83),召回率为0.75(95%CI:0.70-0.79),F1分数为0.74(95%CI:0.69-0.78),AUC-ROC为0.88(95%CI:0.86-0.91),AUC-PR为0.77(95%CI:0.73-0.80)。
机器学习模型,尤其是XGBoost,在ICU环境下早期营养不良预测中表现出良好性能。由此产生的基于网络的工具为临床决策支持提供了宝贵资源。
中国临床试验注册中心ChiCTR2200058286(https://www.chictr.org.cn/bin/project/edit?pid=248690)。2022年4月4日注册。前瞻性注册。