文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从高通量评估到湿实验室研究:利用检索增强模型推进突变效应预测

From high-throughput evaluation to wet-lab studies: advancing mutation effect prediction with a retrieval-enhanced model.

作者信息

Tan Yang, Wang Ruilin, Wu Banghao, Hong Liang, Zhou Bingxin

机构信息

Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.

School of Information and Science, East China University of Science and Technology, Shanghai, 200231, China.

出版信息

Bioinformatics. 2025 Jul 1;41(Supplement_1):i401-i409. doi: 10.1093/bioinformatics/btaf189.


DOI:10.1093/bioinformatics/btaf189
PMID:40662802
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12261477/
Abstract

MOTIVATION: Enzyme engineering is a critical approach for producing enzymes that meet industrial and research demands by modifying wild-type proteins to enhance properties such as catalytic activity and thermostability. Beyond traditional directed evolution and rational design, recent advancements in deep learning offer cost-effective and high-performance alternatives. By encoding implicit coevolutionary patterns, these pretrained models have become powerful tools, with the central challenge being to uncover the intricate relationships among protein sequence, structure, and function. RESULTS: We present VenusREM, a retrieval-enhanced protein language model designed to capture local amino acid interactions in both spatial and temporal scales. VenusREM achieves state-of-the-art performance on 217 assays from the ProteinGym benchmark. Beyond high-throughput open benchmark validations, we conducted a low-throughput post hoc analysis on more than 30 mutants to verify the model's ability to improve the stability and binding affinity of a VHH antibody. We also validated the effectiveness of VenusREM by designing 10 novel mutants of a DNA polymerase and performing wet-lab experiments to evaluate their enhanced activity at elevated temperatures. Both in silico and experimental evaluations not only confirm the reliability of VenusREM as a computational tool for enzyme engineering but also demonstrate a comprehensive evaluation framework for future computational studies in mutation effect prediction. AVAILABILITY AND IMPLEMENTATION: The implementation is available at https://github.com/tyang816/VenusREM.

摘要

动机:酶工程是一种关键方法,通过修饰野生型蛋白质以增强催化活性和热稳定性等特性来生产满足工业和研究需求的酶。除了传统的定向进化和理性设计外,深度学习的最新进展提供了经济高效且高性能的替代方案。通过对隐含的协同进化模式进行编码,这些预训练模型已成为强大的工具,核心挑战在于揭示蛋白质序列、结构和功能之间的复杂关系。 结果:我们提出了VenusREM,这是一种检索增强的蛋白质语言模型,旨在在空间和时间尺度上捕捉局部氨基酸相互作用。VenusREM在ProteinGym基准测试的217项测定中取得了领先水平的性能。除了高通量开放基准验证外,我们对30多个突变体进行了低通量事后分析,以验证该模型改善VHH抗体稳定性和结合亲和力的能力。我们还通过设计一种DNA聚合酶的10个新突变体并进行湿实验室实验来评估它们在高温下增强的活性,从而验证了VenusREM的有效性。计算机模拟和实验评估不仅证实了VenusREM作为酶工程计算工具的可靠性,还展示了一个用于未来突变效应预测计算研究的综合评估框架。 可用性和实现方式:该实现可在https://github.com/tyang816/VenusREM获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e5/12261477/72a5e302f87b/btaf189f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e5/12261477/f53cb6517234/btaf189f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e5/12261477/1535d2d7069e/btaf189f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e5/12261477/72a5e302f87b/btaf189f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e5/12261477/f53cb6517234/btaf189f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e5/12261477/1535d2d7069e/btaf189f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e5/12261477/72a5e302f87b/btaf189f3.jpg

相似文献

[1]
From high-throughput evaluation to wet-lab studies: advancing mutation effect prediction with a retrieval-enhanced model.

Bioinformatics. 2025-7-1

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.

Cochrane Database Syst Rev. 2008-7-16

[4]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[5]
Short-Term Memory Impairment

2025-1

[6]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[7]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[8]
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.

Cochrane Database Syst Rev. 2022-3-2

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[10]
iACP-DPNet: a dual-pooling causal dilated convolutional network for interpretable anticancer peptide identification.

Funct Integr Genomics. 2025-7-4

引用本文的文献

[1]
Sequence-only prediction of binding affinity changes: a robust and interpretable model for antibody engineering.

Bioinformatics. 2025-8-2

本文引用的文献

[1]
Semantical and geometrical protein encoding toward enhanced bioactivity and thermostability.

Elife. 2025-5-2

[2]
AI-enabled alkaline-resistant evolution of protein to apply in mass production.

Elife. 2025-2-19

[3]
Protein engineering in the deep learning era.

mLife. 2024-12-26

[4]
Expert-guided protein language models enable accurate and blazingly fast fitness prediction.

Bioinformatics. 2024-11-1

[5]
A conditional protein diffusion model generates artificial programmable endonuclease sequences with enhanced activity.

Cell Discov. 2024-9-10

[6]
Accurate structure prediction of biomolecular interactions with AlphaFold 3.

Nature. 2024-6

[7]
Protein Engineering with Lightweight Graph Denoising Neural Networks.

J Chem Inf Model. 2024-5-13

[8]
Masked inverse folding with sequence transfer for protein representation learning.

Protein Eng Des Sel. 2023-1-21

[9]
Fast and accurate protein structure search with Foldseek.

Nat Biotechnol. 2024-2

[10]
Evolutionary-scale prediction of atomic-level protein structure with a language model.

Science. 2023-3-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索