文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GRACKLE:一种用于生物医学表示学习的可解释矩阵分解方法。

GRACKLE: an interpretable matrix factorization approach for biomedical representation learning.

作者信息

Gillenwater Lucas A, Hunter Lawrence E, Costello James C

机构信息

Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States.

Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States.

出版信息

Bioinformatics. 2025 Jul 1;41(Supplement_1):i609-i618. doi: 10.1093/bioinformatics/btaf213.


DOI:10.1093/bioinformatics/btaf213
PMID:40662804
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12261436/
Abstract

MOTIVATION: Disruption in normal gene expression can contribute to the development of diseases and chronic conditions. However, identifying disease-specific gene signatures can be challenging due to the presence of multiple co-occurring conditions and limited sample sizes. Unsupervised representation learning methods, such as matrix decomposition and deep learning, simplify high-dimensional data into understandable patterns, but often do not provide clear biological explanations. Incorporating prior biological knowledge directly can enhance understanding and address small sample sizes. Nevertheless, current models do not jointly consider prior knowledge of molecular interactions and sample labels. RESULTS: We present GRACKLE, a novel nonnegative matrix factorization approach that applies Graph Regularization Across Contextual KnowLedgE. GRACKLE integrates sample similarity and gene similarity matrices based on sample metadata and molecular relationships, respectively. Simulation studies show GRACKLE outperformed other NMF algorithms, especially with increased background noise. GRACKLE effectively stratified breast tumor samples and identified condition-enriched subgroups in individuals with Down syndrome. The model's latent representations aligned with known biological patterns, such as autoimmune conditions and sleep apnea in Down syndrome. GRACKLE's flexibility allows application to various data modalities, offering a robust solution for identifying context-specific molecular mechanisms in biomedical research. AVAILABILITY AND IMPLEMENTATION: GRACKLE is available at: https://github.com/lagillenwater/GRACKLE.

摘要

动机:正常基因表达的破坏可能导致疾病和慢性病的发展。然而,由于存在多种并发疾病和样本量有限,识别疾病特异性基因特征可能具有挑战性。无监督表示学习方法,如矩阵分解和深度学习,将高维数据简化为可理解的模式,但通常不提供清晰的生物学解释。直接纳入先验生物学知识可以增强理解并解决小样本量问题。然而,当前模型并未联合考虑分子相互作用的先验知识和样本标签。 结果:我们提出了GRACKLE,一种新颖的非负矩阵分解方法,它应用跨上下文知识的图正则化。GRACKLE分别基于样本元数据和分子关系整合样本相似性和基因相似性矩阵。模拟研究表明,GRACKLE优于其他非负矩阵分解算法,尤其是在背景噪声增加的情况下。GRACKLE有效地对乳腺肿瘤样本进行了分层,并在唐氏综合征患者中识别出条件富集亚组。该模型的潜在表示与已知的生物学模式一致,如唐氏综合征中的自身免疫性疾病和睡眠呼吸暂停。GRACKLE的灵活性允许应用于各种数据模式,为在生物医学研究中识别特定于上下文的分子机制提供了一个强大的解决方案。 可用性和实现:GRACKLE可在以下网址获取:https://github.com/lagillenwater/GRACKLE。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/9bacad761aa7/btaf213f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/dbac866da25e/btaf213f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/a3240cef75f6/btaf213f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/d7139d22abd1/btaf213f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/39d9fe903038/btaf213f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/9bacad761aa7/btaf213f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/dbac866da25e/btaf213f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/a3240cef75f6/btaf213f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/d7139d22abd1/btaf213f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/39d9fe903038/btaf213f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1f/12261436/9bacad761aa7/btaf213f5.jpg

相似文献

[1]
GRACKLE: an interpretable matrix factorization approach for biomedical representation learning.

Bioinformatics. 2025-7-1

[2]
Short-Term Memory Impairment

2025-1

[3]
Systemic Inflammatory Response Syndrome

2025-1

[4]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[8]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[9]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[10]
Clinical Practice Updates: AGA Clinical Practice Update on GI Manifestations and Autonomic or Immune Dysfunction in Hypermobile Ehlers-Danlos Syndrome: Expert Review.

Clin Gastroenterol Hepatol. 2025-5-19

本文引用的文献

[1]
Integrated analysis of immunometabolic interactions in Down syndrome.

Sci Adv. 2024-12-13

[2]
A Pathway-Level Information ExtractoR (PLIER) framework to gain mechanistic insights into obesity in Down syndrome.

Pac Symp Biocomput. 2025

[3]
Inferring cellular and molecular processes in single-cell data with non-negative matrix factorization using Python, R and GenePattern Notebook implementations of CoGAPS.

Nat Protoc. 2023-12

[4]
The Human Phenotype Ontology in 2024: phenotypes around the world.

Nucleic Acids Res. 2024-1-5

[5]
Adjustment of spurious correlations in co-expression measurements from RNA-Sequencing data.

Bioinformatics. 2023-10-3

[6]
Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms.

Nat Commun. 2023-9-9

[7]
Towards understandings of serine/arginine-rich splicing factors.

Acta Pharm Sin B. 2023-8

[8]
Deep multi-view contrastive learning for cancer subtype identification.

Brief Bioinform. 2023-9-20

[9]
Multidimensional definition of the interferonopathy of Down syndrome and its response to JAK inhibition.

Sci Adv. 2023-6-28

[10]
The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest.

Nucleic Acids Res. 2023-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索