文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过基因表达模式预测遗传关联,突出了疾病的病因和药物机制。

Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms.

机构信息

Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.

出版信息

Nat Commun. 2023 Sep 9;14(1):5562. doi: 10.1038/s41467-023-41057-4.


DOI:10.1038/s41467-023-41057-4
PMID:37689782
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10492839/
Abstract

Genes act in concert with each other in specific contexts to perform their functions. Determining how these genes influence complex traits requires a mechanistic understanding of expression regulation across different conditions. It has been shown that this insight is critical for developing new therapies. Transcriptome-wide association studies have helped uncover the role of individual genes in disease-relevant mechanisms. However, modern models of the architecture of complex traits predict that gene-gene interactions play a crucial role in disease origin and progression. Here we introduce PhenoPLIER, a computational approach that maps gene-trait associations and pharmacological perturbation data into a common latent representation for a joint analysis. This representation is based on modules of genes with similar expression patterns across the same conditions. We observe that diseases are significantly associated with gene modules expressed in relevant cell types, and our approach is accurate in predicting known drug-disease pairs and inferring mechanisms of action. Furthermore, using a CRISPR screen to analyze lipid regulation, we find that functionally important players lack associations but are prioritized in trait-associated modules by PhenoPLIER. By incorporating groups of co-expressed genes, PhenoPLIER can contextualize genetic associations and reveal potential targets missed by single-gene strategies.

摘要

基因在特定环境中协同作用以发挥其功能。要确定这些基因如何影响复杂性状,就需要对不同条件下的表达调控有一个机械的理解。已经表明,这种洞察力对于开发新的治疗方法至关重要。全转录组关联研究有助于揭示单个基因在与疾病相关的机制中的作用。然而,复杂性状结构的现代模型预测,基因-基因相互作用在疾病的起源和发展中起着至关重要的作用。在这里,我们引入 PhenoPLIER,这是一种计算方法,它将基因-性状关联和药理学扰动数据映射到一个共同的潜在表示中,以便进行联合分析。这种表示是基于在相同条件下具有相似表达模式的基因模块。我们观察到,疾病与在相关细胞类型中表达的基因模块显著相关,我们的方法在预测已知的药物-疾病对和推断作用机制方面是准确的。此外,我们使用 CRISPR 筛选来分析脂质调节,发现功能上重要的参与者缺乏关联,但 PhenoPLIER 将它们优先分配到与性状相关的模块中。通过整合共同表达的基因群,PhenoPLIER 可以将遗传关联置于上下文中,并揭示可能被单基因策略遗漏的潜在目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/ff3255838b15/41467_2023_41057_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/9637c01751ae/41467_2023_41057_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/2599a32a2133/41467_2023_41057_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/f1feaf15d77d/41467_2023_41057_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/8684e9022a2f/41467_2023_41057_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/346bc943ef98/41467_2023_41057_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/9a7bfdec8ac9/41467_2023_41057_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/ff3255838b15/41467_2023_41057_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/9637c01751ae/41467_2023_41057_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/2599a32a2133/41467_2023_41057_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/f1feaf15d77d/41467_2023_41057_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/8684e9022a2f/41467_2023_41057_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/346bc943ef98/41467_2023_41057_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/9a7bfdec8ac9/41467_2023_41057_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/10492839/ff3255838b15/41467_2023_41057_Fig7_HTML.jpg

相似文献

[1]
Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms.

Nat Commun. 2023-9-9

[2]
High-resolution mapping of cancer cell networks using co-functional interactions.

Mol Syst Biol. 2018-12-20

[3]
Transcriptome-wide gene-gene interaction associations elucidate pathways and functional enrichment of complex traits.

PLoS Genet. 2023-5

[4]
A new Bayesian factor analysis method improves detection of genes and biological processes affected by perturbations in single-cell CRISPR screening.

Nat Methods. 2023-11

[5]
Mapping the Genetic Landscape of Human Cells.

Cell. 2018-7-19

[6]
Dissection of complex gene expression using the combined analysis of pleiotropy and epistasis.

Pac Symp Biocomput. 2014

[7]
Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks.

Nat Genet. 2022-8

[8]
Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.

Chaos. 2010-6

[9]
WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.

BMC Bioinformatics. 2018-7-31

[10]
CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation.

ACS Synth Biol. 2024-10-18

引用本文的文献

[1]
Integrating single-cell and single-nucleus datasets improves bulk RNA-seq deconvolution.

bioRxiv. 2025-8-23

[2]
GRACKLE: an interpretable matrix factorization approach for biomedical representation learning.

Bioinformatics. 2025-7-1

[3]
PLIERv2: bigger, better and faster.

bioRxiv. 2025-6-8

[4]
Mechanistic insights into Down syndrome comorbidities via convergent RNA-seq and TWAS signals.

bioRxiv. 2025-6-12

[5]
Meta-Learning on Augmented Gene Expression Profiles for Enhanced Lung Cancer Detection.

AMIA Annu Symp Proc. 2025-5-22

[6]
Can AI reveal the next generation of high-impact bone genomics targets?

Bone Rep. 2025-3-24

[7]
Genetic Studies Through the Lens of Gene Networks.

Annu Rev Biomed Data Sci. 2025-2-20

[8]
Integration of 168,000 samples reveals global patterns of the human gut microbiome.

Cell. 2025-2-20

[9]
BuDDI: Bulk Deconvolution with Domain Invariance to predict cell-type-specific perturbations from bulk.

PLoS Comput Biol. 2025-1-17

[10]
A Pathway-Level Information ExtractoR (PLIER) framework to gain mechanistic insights into obesity in Down syndrome.

Pac Symp Biocomput. 2025

本文引用的文献

[1]
Systematic tissue annotations of genomics samples by modeling unstructured metadata.

Nat Commun. 2022-11-8

[2]
GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases.

Nat Commun. 2022-6-27

[3]
Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries.

Genome Biol. 2022-1-13

[4]
recount3: summaries and queries for large-scale RNA-seq expression and splicing.

Genome Biol. 2021-11-29

[5]
UTMOST, a single and cross-tissue TWAS (Transcriptome Wide Association Study), reveals new ASD (Autism Spectrum Disorder) associated genes.

Transl Psychiatry. 2021-4-30

[6]
Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia.

PLoS Genet. 2021-4

[7]
Chronic niacin administration ameliorates ovulation, histological changes in the ovary and adiponectin concentrations in a rat model of polycystic ovary syndrome.

Reprod Fertil Dev. 2021-5

[8]
Regulatory genomic circuitry of human disease loci by integrative epigenomics.

Nature. 2021-2

[9]
Probabilistic colocalization of genetic variants from complex and molecular traits: promise and limitations.

Am J Hum Genet. 2021-1-7

[10]
PhenomeXcan: Mapping the genome to the phenome through the transcriptome.

Sci Adv. 2020-9-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索