Suppr超能文献

巨噬细胞相关蛋白与乳腺癌风险及预后的关系探究

Exploration of the Relationship between Macrophage-Related Proteins and the Risk and Prognosis of Breast Cancer.

作者信息

Ma Hong-Fang, He Qi-Na, Lu Yi, Shen Jun

出版信息

Clin Lab. 2025 Jul 1;71(7). doi: 10.7754/Clin.Lab.2025.241128.

Abstract

BACKGROUND

Macrophage-related proteins play a crucial role in breast cancer. The present study explored the relationship between macrophage-related proteins and breast cancer using Mendelian randomization (MR) for genetic variations and bioinformatics methods for transcriptomics.

METHODS

Genetic instruments associated with macrophage migration inhibitory factor (MIF), macrophage inflammatory protein 1α (MIP-1α), macrophage inflammatory protein 1β (MIP-1β), and granulocyte macrophage colony-stimulating factor (GM-CSF) were gathered from genome-wide association studies (GWAS). The MR analysis was conducted using R software packages 'TwoSampleMR' and 'MRPRESSO', employing MR-Egger, in-verse-variance weighted (IVW), weighted median, simple mode, and MR-PRESSO algorithms. In addition, data from the UCSC Xena database provided the TCGA BRCA dataset for a 5-year overall survival analysis of MIP-1α.

RESULTS

IVW analysis showed a significant positive association between MIP-1α and breast cancer incidence (OR = 1.0837, 95% CI: 1.0284 - 1.142), and the MR-PRESSO result also confirmed a causal relationship between them (OR = 1.0789, 95% CI: 1.0266 - 1.1338). There was no significant causal relationship found between MIF, MIP-1B, GM-CSF, and breast cancer. Survival analysis revealed that CCL3 was associated with prognosis in breast cancer patients in the Cox proportional-hazard model (HR = 1.5000, 95% CI: 1.0110 - 2.2250).

CONCLUSIONS

Elevated levels of macrophage inflammatory protein 1A may increase the risk of breast cancer and lead to poorer patient outcomes.

摘要

背景

巨噬细胞相关蛋白在乳腺癌中起着至关重要的作用。本研究利用孟德尔随机化(MR)分析基因变异以及生物信息学方法分析转录组学,探讨巨噬细胞相关蛋白与乳腺癌之间的关系。

方法

从全基因组关联研究(GWAS)中收集与巨噬细胞迁移抑制因子(MIF)、巨噬细胞炎性蛋白1α(MIP-1α)、巨噬细胞炎性蛋白1β(MIP-1β)和粒细胞巨噬细胞集落刺激因子(GM-CSF)相关的遗传工具变量。使用R软件包“TwoSampleMR”和“MRPRESSO”进行MR分析,采用MR-Egger、逆方差加权(IVW)、加权中位数、简单模式和MR-PRESSO算法。此外,来自加州大学圣克鲁兹分校(UCSC)Xena数据库的数据提供了TCGA BRCA数据集,用于对MIP-1α进行5年总生存分析。

结果

IVW分析显示MIP-1α与乳腺癌发病率之间存在显著正相关(OR = 1.0837,95%CI:1.0284 - 1.142),MR-PRESSO结果也证实了它们之间的因果关系(OR = 1.0789,95%CI:1.0266 - 1.1338)。未发现MIF、MIP-1B、GM-CSF与乳腺癌之间存在显著因果关系。生存分析显示,在Cox比例风险模型中,CCL3与乳腺癌患者的预后相关(HR = 1.5000,95%CI:1.0110 - 2.2250)。

结论

巨噬细胞炎性蛋白1A水平升高可能增加乳腺癌风险并导致患者预后较差。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验