Suppr超能文献

冷冻贮藏期间蛋黄果泥的颜色动力学、色素及抗氧化能力:一项使用CIELAB颜色空间和机器学习模型的相关性研究

Color Dynamics, Pigments and Antioxidant Capacity in Pouteria sapota Puree During Frozen Storage: A Correlation Study Using CIELAB Color Space and Machine Learning Models.

作者信息

Sánchez-Franco José Antonio, Cruz-Cansino Nelly Del Socorro, Zafra-Rojas Quinatzin Yadira, Ayala-Niño Daniel, Ayala-Niño Alexis

机构信息

Universidad Autónoma del Estado de México, Unidad Académica Profesional Acolman, Área Académica de Nutrición, Acolman, Estado de México, 55887, Mexico.

Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Área Académica de Nutrición, Ex-Circuito Hacienda la Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca, Hidalgo, C.P. 42160, Mexico.

出版信息

Plant Foods Hum Nutr. 2025 Jul 15;80(3):147. doi: 10.1007/s11130-025-01388-7.

Abstract

The accurate prediction of bioactive compounds and antioxidant activity in food matrices is critical for optimizing nutritional quality and industrial applications. This study compares the performance of multiple linear regression (MLR) and artificial neural networks (ANN) in predicting antioxidant activity (DPPH, ABTS), total carotenoids, and anthocyanins in mamey pulp, using color variables (CIELab) as predictors. Our results demonstrate that ANN models consistently outperform MLR, achieving lower mean squared error (MSE) and mean absolute error (MAE), alongside higher coefficients of determination (R). For instance, ANN improved R values from 0.54 to 0.78 for DPPH, from 0.70 to 0.92 for ABTS, and from 0.45 to 0.87 for total carotenoids. These results highlight the superior ability of ANN to capture nonlinear relationships in complex food systems. Furthermore, the integration of ANN with image analysis techniques offers a promising approach for nondestructive quality control during storage and processing. This research underscores the potential of ANN as a powerful tool for screening bioactive compounds and optimizing functional food development, contributing to advancements in food science and technology.

摘要

准确预测食品基质中的生物活性化合物和抗氧化活性对于优化营养品质和工业应用至关重要。本研究比较了多元线性回归(MLR)和人工神经网络(ANN)在预测番荔枝果肉中抗氧化活性(DPPH、ABTS)、总类胡萝卜素和花青素方面的性能,使用颜色变量(CIELab)作为预测因子。我们的结果表明,ANN模型始终优于MLR,具有更低的均方误差(MSE)和平均绝对误差(MAE),以及更高的决定系数(R)。例如,ANN将DPPH的R值从0.54提高到0.78,将ABTS的R值从0.70提高到0.92,将总类胡萝卜素的R值从0.45提高到0.87。这些结果突出了ANN在复杂食品系统中捕捉非线性关系的卓越能力。此外,ANN与图像分析技术的整合为储存和加工过程中的无损质量控制提供了一种有前景的方法。本研究强调了ANN作为筛选生物活性化合物和优化功能性食品开发的强大工具的潜力,为食品科学与技术的进步做出了贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验