Suppr超能文献

用于中国大陆流感样疾病预测的ChatGPT辅助深度学习模型:时间序列分析

ChatGPT-Assisted Deep Learning Models for Influenza-Like Illness Prediction in Mainland China: Time Series Analysis.

作者信息

Huang Weihong, Wei Wudi, He Xiaotao, Zhan Baili, Xie Xiaoting, Zhang Meng, Lai Shiyi, Yuan Zongxiang, Lai Jingzhen, Chen Rongfeng, Jiang Junjun, Ye Li, Liang Hao

机构信息

Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-Association of Southeast Asian Nations, Life Sciences Institute, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China, 86 0771-5334215.

出版信息

J Med Internet Res. 2025 Jun 27;27:e74423. doi: 10.2196/74423.

Abstract

BACKGROUND

Influenza in mainland China results in a large number of outpatient and emergency visits related to influenza-like illness (ILI) annually. While deep learning models show promise for improving influenza forecasting, their technical complexity remains a barrier to practical implementation. Large language models, such as ChatGPT, offer the potential to reduce these barriers by supporting automated code generation, debugging, and model optimization.

OBJECTIVE

This study aimed to evaluate the predictive performance of several deep learning models for ILI positive rates in mainland China and to explore the auxiliary role of ChatGPT-assisted development in facilitating model implementation.

METHODS

ILI positivity rate data spanning from 2014 to 2024 were obtained from the Chinese National Influenza Center (CNIC) database. In total, 5 deep learning architectures-long short-term memory (LSTM), neural basis expansion analysis for time series (N-BEATS), transformer, temporal fusion transformer (TFT), and time-series dense encoder (TiDE)-were developed using a ChatGPT-assisted workflow covering code generation, error debugging, and performance optimization. Models were trained on data from 2014 to 2023 and tested on holdout data from 2024 (weeks 1-39). Performance was evaluated using mean squared error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).

RESULTS

ILI trends exhibited clear seasonal patterns with winter peaks and summer troughs, alongside marked fluctuations during the COVID-19 pandemic period (2020-2022). All 5 deep learning models were successfully constructed, debugged, and optimized with the assistance of ChatGPT. Among the 5 models, TiDE achieved the best predictive performance nationally (MAE=5.551, MSE=43.976, MAPE=72.413%) and in the southern region (MAE=7.554, MSE=89.708, MAPE=74.475%). In the northern region, where forecasting proved more challenging, TiDE still performed best (MAE=4.131, MSE=28.922), although high percentage errors remained (MAPE>400%). N-BEATS demonstrated the second-best performance nationally (MAE=9.423) and showed greater stability in the north (MAE=6.325). In contrast, transformer and TFT consistently underperformed, with national MAE values of 10.613 and 12.538, respectively. TFT exhibited the highest deviation (national MAPE=169.29%). Extreme regional disparities were observed, particularly in northern China, where LSTM and TFT generated MAPE values exceeding 1918%, despite LSTM's moderate performance in the south (MAE=9.460).

CONCLUSIONS

Deep learning models, particularly TiDE, demonstrate strong potential for accurate ILI forecasting across diverse regions of China. Furthermore, large language models like ChatGPT can substantially enhance modeling efficiency and accessibility by assisting nontechnical users in model development. These findings support the integration of AI-assisted workflows into epidemic prediction systems as a scalable approach for improving public health preparedness.

摘要

背景

中国大陆的流感每年导致大量与流感样疾病(ILI)相关的门诊和急诊就诊。虽然深度学习模型在改善流感预测方面显示出前景,但其技术复杂性仍然是实际应用的障碍。诸如ChatGPT之类的大语言模型通过支持自动代码生成、调试和模型优化,提供了减少这些障碍的潜力。

目的

本研究旨在评估几种深度学习模型对中国大陆ILI阳性率的预测性能,并探索ChatGPT辅助开发在促进模型实施方面的辅助作用。

方法

从中国国家流感中心(CNIC)数据库获取了2014年至2024年的ILI阳性率数据。总共使用ChatGPT辅助工作流程开发了5种深度学习架构——长短期记忆(LSTM)、时间序列神经基扩展分析(N-BEATS)、变压器、时间融合变压器(TFT)和时间序列密集编码器(TiDE),该工作流程涵盖代码生成、错误调试和性能优化。模型使用2014年至2023年的数据进行训练,并在2024年(第1 - 39周)的预留数据上进行测试。使用均方误差(MSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)评估性能。

结果

ILI趋势呈现出明显的季节性模式,冬季达到峰值,夏季处于低谷,同时在新冠疫情期间(2020 - 2022年)出现明显波动。在ChatGPT的协助下,所有5种深度学习模型均成功构建、调试和优化。在这5种模型中,TiDE在全国范围内(MAE = 5.551,MSE = 43.976,MAPE = 72.413%)以及南部地区(MAE = 7.554,MSE = 89.708,MAPE = 74.475%)实现了最佳预测性能。在预测更具挑战性的北部地区,TiDE仍然表现最佳(MAE = 4.131,MSE = 28.922),尽管百分比误差仍然很高(MAPE > 400%)。N-BEATS在全国范围内表现第二好(MAE = 9.423),并且在北部表现出更大的稳定性(MAE = 6.325)。相比之下,变压器和TFT一直表现不佳,全国MAE值分别为10.613和12.538。TFT表现出最高的偏差(全国MAPE = 169.29%)。观察到极端的地区差异,特别是在中国北方,LSTM和TFT产生的MAPE值超过1918%,尽管LSTM在南部表现适中(MAE = 9.460)。

结论

深度学习模型,特别是TiDE,在中国不同地区的ILI准确预测方面显示出强大潜力。此外,像ChatGPT这样的大语言模型可以通过协助非技术用户进行模型开发,大幅提高建模效率和可及性。这些发现支持将人工智能辅助工作流程整合到疫情预测系统中,作为提高公共卫生准备的一种可扩展方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e7/12227151/37e6daa2a034/jmir-v27-e74423-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验