Suppr超能文献

一种用于明场生物显微镜自动对焦的小波引导变压器方法。

A wavelet-guided transformer approach for autofocus in brightfield biological microscopy.

作者信息

Yang Wangka, Lv Meini, Yu Zhenming, Deng Jiawei

机构信息

School of Computer Electronics and Information, Guangxi University, Nanning, 530004, China.

WuZhou University, Wuzhou, 543002, China.

出版信息

Sci Rep. 2025 Jul 15;15(1):25521. doi: 10.1038/s41598-025-11037-3.

Abstract

Autofocus plays a crucial role in Biological Microscopy by ensuring image clarity and improving operational efficiency. However, mainstream brightfield biological microscopes still rely on conventional autofocus methods, which suffer from poor real-time performance and high sensitivity to noise, limiting their applicability in time-critical scenarios. To address these challenges, we propose a Wavelet-Guided Transformer Network (WGT-Net) that enables fast and accurate autofocus prediction from a single blurred image. WGT-Net integrates three key design elements: the use of wavelet transform to construct multi-scale blurred features and perform downsampling; a Transformer module that captures global-local dependencies across multi-scale image features; a Gaussian soft labeling strategy that models the optimal focus position as a probability distribution to handle uncertainty. Experiments conducted on a locally collected dataset demonstrate that WGT-Net achieves a mean absolute error (MAE) of 0.0869 and a root mean square error (RMSE) of 0.101, achieving 28.69% and 32.39% reductions in MAE and RMSE, respectively, compared with state-of-the-art methods, and completing predictions within milliseconds. These results demonstrate that WGT-Net significantly improves both prediction accuracy and real-time performance, highlighting its suitability for real-time, high-throughput Brightfield Biological Microscopy applications.

摘要

自动聚焦在生物显微镜中起着至关重要的作用,它能确保图像清晰度并提高操作效率。然而,主流的明场生物显微镜仍依赖传统的自动聚焦方法,这些方法实时性能较差,对噪声敏感度高,限制了它们在时间紧迫场景中的适用性。为应对这些挑战,我们提出了一种小波引导的变压器网络(WGT-Net),它能够从单个模糊图像中实现快速准确的自动聚焦预测。WGT-Net集成了三个关键设计元素:使用小波变换构建多尺度模糊特征并进行下采样;一个变压器模块,用于捕捉多尺度图像特征中的全局-局部依赖性;一种高斯软标签策略,将最佳聚焦位置建模为概率分布以处理不确定性。在本地收集的数据集上进行的实验表明,WGT-Net的平均绝对误差(MAE)为0.0869,均方根误差(RMSE)为0.101,与现有方法相比,MAE和RMSE分别降低了28.69%和32.39%,并能在毫秒内完成预测。这些结果表明,WGT-Net显著提高了预测准确性和实时性能,凸显了其适用于实时、高通量明场生物显微镜应用的特点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验