Yin Lingshu, Sforza Daniel, Miles Devin, Masumi Umezawa, Ota Kan, Jia Xun, Li Heng
Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Med Phys. 2025 Jul;52(7):e18008. doi: 10.1002/mp.18008.
BACKGROUND: Recent studies suggest that radiotherapy at ultrahigh dose rates (>40 Gy/s, FLASH) offers normal tissue sparing effects while maintaining tumor control. There is significant interest in preclinical studies investigating the mechanism of FLASH sparing effects. PURPOSE: This study aims to commission a fixed proton beamline within a synchrotron-based proton therapy system for preclinical proton FLASH research. METHODS: Modifications were made to the Hitachi PROBEAT-CR synchrotron system to enhance RF extraction power and increase proton beam current at 142.4 MeV. A high-speed electrometer and an optimized transmission ion chamber (IC) were implemented for ultra-high dose rate (UHDR) beam monitoring and delivery, replacing the conventional beam monitoring IC. Beam output was measured using a Faraday cup in both UHDR and clinical modes. Gafchromic film measurements and Monte Carlo simulations were employed to validate dose delivery in a solid water phantom with various spot scanning patterns. RESULTS: The calibration of transmission IC against Faraday cup shows sufficient charge collection efficiency at both clinical dose rates and UHDR. The UHDR PBS beamline demonstrates better than 1% reproducibility and linearity in the absolute beam output. Due to the limited charge per spill, the delivered dose per spill is inversely proportional to the field size. However, the system can deliver up to 41.4 Gy (268.1 Gy/sec) at 2 cm depth with a field size (FWHM) of 8.2 mm, demonstrating suitability for small animal proton FLASH irradiation studies. CONCLUSION: We successfully commissioned a fixed beam proton UHDR PBS beamline in a synchrotron-based proton therapy system. Despite synchrotron-specific system constraints, our system enables controlled UHDR delivery for preclinical proton FLASH research.
背景:近期研究表明,超高剂量率(>40 Gy/s,即FLASH)放疗在维持肿瘤控制的同时可产生正常组织保护效应。临床前研究对探究FLASH保护效应的机制有着浓厚兴趣。 目的:本研究旨在在基于同步加速器的质子治疗系统内启用一条固定质子束线,用于临床前质子FLASH研究。 方法:对日立PROBEAT-CR同步加速器系统进行了改进,以提高射频提取功率并增加142.4 MeV时的质子束流。采用高速静电计和优化的透射电离室(IC)进行超高剂量率(UHDR)束流监测和输送,取代了传统的束流监测IC。在UHDR和临床模式下均使用法拉第杯测量束流输出。采用放射变色膜测量和蒙特卡罗模拟来验证在具有各种点扫描模式的固体水模体中的剂量输送。 结果:透射IC相对于法拉第杯的校准显示,在临床剂量率和UHDR下均具有足够的电荷收集效率。UHDR质子笔形束扫描(PBS)束线在绝对束流输出方面表现出优于1%的重现性和线性。由于每次脉冲的电荷量有限,每次脉冲输送的剂量与射野大小成反比。然而,该系统在2 cm深度处,射野大小(半高宽)为8.2 mm时,可输送高达41.4 Gy(268.1 Gy/秒),表明适用于小动物质子FLASH照射研究。 结论:我们在基于同步加速器的质子治疗系统中成功启用了一条固定束流质子UHDR PBS束线。尽管存在同步加速器特定的系统限制,但我们的系统能够实现可控的UHDR输送,用于临床前质子FLASH研究。
Int J Radiat Oncol Biol Phys. 2025-4-1
Int J Radiat Oncol Biol Phys. 2024-9-1
Biomed Phys Eng Express. 2023-9-4
Int J Radiat Oncol Biol Phys. 2023-11-15
Int J Part Ther. 2023-3-3