文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在基于同步加速器的质子治疗系统中调试一条142.4兆电子伏特的超高剂量率(UHDR)质子束线。

Commissioning of a 142.4 MeV ultra-high dose rate (UHDR) proton beamline in a synchrotron-based proton therapy system.

作者信息

Yin Lingshu, Sforza Daniel, Miles Devin, Masumi Umezawa, Ota Kan, Jia Xun, Li Heng

机构信息

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Med Phys. 2025 Jul;52(7):e18008. doi: 10.1002/mp.18008.


DOI:10.1002/mp.18008
PMID:40665655
Abstract

BACKGROUND: Recent studies suggest that radiotherapy at ultrahigh dose rates (>40 Gy/s, FLASH) offers normal tissue sparing effects while maintaining tumor control. There is significant interest in preclinical studies investigating the mechanism of FLASH sparing effects. PURPOSE: This study aims to commission a fixed proton beamline within a synchrotron-based proton therapy system for preclinical proton FLASH research. METHODS: Modifications were made to the Hitachi PROBEAT-CR synchrotron system to enhance RF extraction power and increase proton beam current at 142.4 MeV. A high-speed electrometer and an optimized transmission ion chamber (IC) were implemented for ultra-high dose rate (UHDR) beam monitoring and delivery, replacing the conventional beam monitoring IC. Beam output was measured using a Faraday cup in both UHDR and clinical modes. Gafchromic film measurements and Monte Carlo simulations were employed to validate dose delivery in a solid water phantom with various spot scanning patterns. RESULTS: The calibration of transmission IC against Faraday cup shows sufficient charge collection efficiency at both clinical dose rates and UHDR. The UHDR PBS beamline demonstrates better than 1% reproducibility and linearity in the absolute beam output. Due to the limited charge per spill, the delivered dose per spill is inversely proportional to the field size. However, the system can deliver up to 41.4 Gy (268.1 Gy/sec) at 2 cm depth with a field size (FWHM) of 8.2 mm, demonstrating suitability for small animal proton FLASH irradiation studies. CONCLUSION: We successfully commissioned a fixed beam proton UHDR PBS beamline in a synchrotron-based proton therapy system. Despite synchrotron-specific system constraints, our system enables controlled UHDR delivery for preclinical proton FLASH research.

摘要

背景:近期研究表明,超高剂量率(>40 Gy/s,即FLASH)放疗在维持肿瘤控制的同时可产生正常组织保护效应。临床前研究对探究FLASH保护效应的机制有着浓厚兴趣。 目的:本研究旨在在基于同步加速器的质子治疗系统内启用一条固定质子束线,用于临床前质子FLASH研究。 方法:对日立PROBEAT-CR同步加速器系统进行了改进,以提高射频提取功率并增加142.4 MeV时的质子束流。采用高速静电计和优化的透射电离室(IC)进行超高剂量率(UHDR)束流监测和输送,取代了传统的束流监测IC。在UHDR和临床模式下均使用法拉第杯测量束流输出。采用放射变色膜测量和蒙特卡罗模拟来验证在具有各种点扫描模式的固体水模体中的剂量输送。 结果:透射IC相对于法拉第杯的校准显示,在临床剂量率和UHDR下均具有足够的电荷收集效率。UHDR质子笔形束扫描(PBS)束线在绝对束流输出方面表现出优于1%的重现性和线性。由于每次脉冲的电荷量有限,每次脉冲输送的剂量与射野大小成反比。然而,该系统在2 cm深度处,射野大小(半高宽)为8.2 mm时,可输送高达41.4 Gy(268.1 Gy/秒),表明适用于小动物质子FLASH照射研究。 结论:我们在基于同步加速器的质子治疗系统中成功启用了一条固定束流质子UHDR PBS束线。尽管存在同步加速器特定的系统限制,但我们的系统能够实现可控的UHDR输送,用于临床前质子FLASH研究。

相似文献

[1]
Commissioning of a 142.4 MeV ultra-high dose rate (UHDR) proton beamline in a synchrotron-based proton therapy system.

Med Phys. 2025-7

[2]
Characterization of commercial detectors for absolute proton UHDR dosimetry on a compact clinical proton synchrocyclotron.

Med Phys. 2025-4-23

[3]
Design and characterization of a novel scintillator array for UHDR PBS proton therapy surface dosimetry.

Med Phys. 2025-5-31

[4]
Dosimetric calibration of anatomy-specific ultra-high dose rate electron irradiation platform for preclinical FLASH radiobiology experiments.

Med Phys. 2024-12

[5]
First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC.

Med Phys. 2024-7

[6]
Implementation of a novel pencil beam scanning Bragg peak FLASH technique to a commercial treatment planning system.

Med Phys. 2025-7

[7]
A novel 3D proton pencil beam scanning scheme and key physical design of the corresponding rapid cycling synchrotron for FLASH delivery.

Phys Med Biol. 2025-6-20

[8]
Characterization of a shielded beam current transformer for ultra-high dose rate (FLASH) electron beam monitoring and dose reporting.

Med Phys. 2025-7

[9]
Characterizing diamond detectors for various dose and dose rate measurements in scanned carbon and oxygen beams.

Med Phys. 2025-7

[10]
Design andevaluation of a novel beamline for precision small animal pencil beam scanning delivery at clinical proton therapy facilities.

Phys Med Biol. 2025-7-10

本文引用的文献

[1]
FLASH proton reirradiation, with or without hypofractionation, reduces chronic toxicity in the normal murine intestine, skin, and bone.

Radiother Oncol. 2025-4

[2]
Proton FLASH Irradiation Using a Synchrotron Accelerator: Differences by Irradiation Positions.

Int J Radiat Oncol Biol Phys. 2025-4-1

[3]
Proton FLASH: Impact of Dose Rate and Split Dose on Acute Skin Toxicity in a Murine Model.

Int J Radiat Oncol Biol Phys. 2024-9-1

[4]
FLASH Proton Radiation Therapy Mitigates Inflammatory and Fibrotic Pathways and Preserves Cardiac Function in a Preclinical Mouse Model of Radiation-Induced Heart Disease.

Int J Radiat Oncol Biol Phys. 2024-7-15

[5]
Proton-FLASH: effects of ultra-high dose rate irradiation on an in-vivo mouse ear model.

Sci Rep. 2024-1-16

[6]
Feasibility of Synchrotron-Based Ultra-High Dose Rate (UHDR) Proton Irradiation with Pencil Beam Scanning for FLASH Research.

Cancers (Basel). 2024-1-3

[7]
Characterisation of the UK high energy proton research beamline for high and ultra-high dose rate (FLASH) irradiation.

Biomed Phys Eng Express. 2023-9-4

[8]
Increased flexibility and efficiency of a double-scattering FLASH proton beamline configuration forSOBP radiotherapy treatments.

Phys Med Biol. 2023-7-24

[9]
FLASH Effects Induced by Orthovoltage X-Rays.

Int J Radiat Oncol Biol Phys. 2023-11-15

[10]
Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy.

Int J Part Ther. 2023-3-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索