文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于超高剂量率(FLASH)电子束监测和剂量报告的屏蔽束流电流互感器的特性

Characterization of a shielded beam current transformer for ultra-high dose rate (FLASH) electron beam monitoring and dose reporting.

作者信息

Bernelin Thibault, Muir Bryan, Renaud James, Zerouali Karim, Guillet Dominique, Archambault Louis, Lalonde Arthur

机构信息

Université Laval, Québec, QC, Canada.

Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CRCHUM), Montreal, QC, Canada.

出版信息

Med Phys. 2025 Jul;52(7):e17927. doi: 10.1002/mp.17927. Epub 2025 Jun 5.


DOI:10.1002/mp.17927
PMID:40473411
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12257996/
Abstract

BACKGROUND: Real-time beam monitoring and accurate dose reporting is challenging in ultra-high dose rate (UHDR) electron beams. Although beam current transformers (BCTs) can effectively track parameters such as pulse width (PW) and repetition frequency for UHDR electron beams, recent work has highlighted their sensitivity to electric fields induced by transient charge buildup in irradiated media under UHDR conditions. PURPOSE: This study evaluates the performance of a novel electrostatically shielded BCT for real-time, high-accuracy dose monitoring in UHDR electron beams. METHODS: Irradiations were conducted using the Mobetron linear accelerator configured for UHDR electron beams with energies of 6 and 9 MeV. A shielded BCT was implemented to monitor beam delivery, with dose calibration established using alanine dosimeters in solid water phantoms. Dose stability was assessed over short (7-day) and long (16-week) periods. The BCT's response to variations in PW, pulse number, and pulse repetition frequency was also evaluated to determine its robustness across beam configurations. RESULTS: The BCT showed high reproducibility and accuracy, with standard deviations of the difference between BCT-predicted and alanine-measured doses within 0.21% over short-term measurements and 0.57% over long-term measurements, even when subject to large (10%) machine output adjustments. When varying beam parameters, the BCT maintained accurate dose prediction within 1.0% and 1.4% of alanine measurements for 6 and 9 MeV, respectively, with high linearity ( 0.9997) across total doses. CONCLUSION: Shielded BCTs provide a stable and accurate solution for real-time dose monitoring in FLASH radiotherapy, demonstrating robustness against output fluctuations and beam parameter variations. While further calibration standardization is required, this study supports the feasibility of using shielded BCTs for reliable UHDR dose monitoring, facilitating safe and precise implementation of FLASH radiotherapy in preclinical and clinical settings.

摘要

背景:在超高剂量率(UHDR)电子束中,实时束流监测和准确的剂量报告具有挑战性。尽管束流电流互感器(BCT)可以有效地跟踪UHDR电子束的脉冲宽度(PW)和重复频率等参数,但最近的研究强调了它们在UHDR条件下对辐照介质中瞬态电荷积累所感应电场的敏感性。 目的:本研究评估一种新型静电屏蔽BCT在UHDR电子束实时、高精度剂量监测中的性能。 方法:使用配置为6和9 MeV能量的UHDR电子束的Mobetron直线加速器进行照射。采用屏蔽BCT监测束流传输,通过在固体水模体中使用丙氨酸剂量计进行剂量校准。在短(7天)和长(16周)时间段内评估剂量稳定性。还评估了BCT对PW、脉冲数和脉冲重复频率变化的响应,以确定其在不同束流配置下的稳健性。 结果:BCT显示出高重现性和准确性,在短期测量中,BCT预测剂量与丙氨酸测量剂量之间差异的标准差在0.21%以内,在长期测量中为0.57%,即使在机器输出进行大幅(10%)调整时也是如此。当改变束流参数时,对于6和9 MeV的电子束,BCT分别在丙氨酸测量值的1.0%和1.4%范围内保持准确的剂量预测,在总剂量范围内具有高线性(r = 0.9997)。 结论:屏蔽BCT为FLASH放疗中的实时剂量监测提供了一种稳定且准确的解决方案,证明了其对输出波动和束流参数变化具有稳健性。虽然需要进一步的校准标准化,但本研究支持使用屏蔽BCT进行可靠的UHDR剂量监测的可行性,有助于在临床前和临床环境中安全、精确地实施FLASH放疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/f0b93b129e83/MP-52-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/1107e2a939d3/MP-52-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/6071de80bc55/MP-52-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/f95b79fd8809/MP-52-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/6cc1fa3bb254/MP-52-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/689e0a290e9b/MP-52-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/83390f0e71f7/MP-52-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/a60bf48e654c/MP-52-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/f0b93b129e83/MP-52-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/1107e2a939d3/MP-52-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/6071de80bc55/MP-52-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/f95b79fd8809/MP-52-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/6cc1fa3bb254/MP-52-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/689e0a290e9b/MP-52-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/83390f0e71f7/MP-52-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/a60bf48e654c/MP-52-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/12257996/f0b93b129e83/MP-52-0-g003.jpg

相似文献

[1]
Characterization of a shielded beam current transformer for ultra-high dose rate (FLASH) electron beam monitoring and dose reporting.

Med Phys. 2025-7

[2]
Dosimetric calibration of anatomy-specific ultra-high dose rate electron irradiation platform for preclinical FLASH radiobiology experiments.

Med Phys. 2024-12

[3]
Characterization of commercial detectors for absolute proton UHDR dosimetry on a compact clinical proton synchrocyclotron.

Med Phys. 2025-4-23

[4]
First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC.

Med Phys. 2024-7

[5]
Commissioning and performance evaluation of the new electron UHDR FLASHKNiFE® system for FLASH radiation therapy.

Phys Med. 2025-7

[6]
Design and characterization of a novel scintillator array for UHDR PBS proton therapy surface dosimetry.

Med Phys. 2025-5-31

[7]
Characterizing diamond detectors for various dose and dose rate measurements in scanned carbon and oxygen beams.

Med Phys. 2025-7

[8]
Commissioning of a 142.4 MeV ultra-high dose rate (UHDR) proton beamline in a synchrotron-based proton therapy system.

Med Phys. 2025-7

[9]
Characterization of silicon carbide diodes as cost-effective active detectors for proton UHDR dosimetry.

Med Phys. 2025-7

[10]
Technical note: Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies.

Med Phys. 2022-3

本文引用的文献

[1]
Physics-based energy spectrum optimization (PESO): a new method to model the energy spectrum of a compact ultra-high dose rate electron linac for Monte Carlo dose calculation.

Phys Med Biol. 2025-4-4

[2]
Electron beam monitoring of a modified conventional medical accelerator with a portable current transformer system traceable to primary electrical standards.

Med Phys. 2025-4

[3]
Development of novel ionization chambers for reference dosimetry in electron flash radiotherapy.

Med Phys. 2024-12

[4]
Commissioning an ultra-high-dose-rate electron linac with end-to-end tests.

Phys Med Biol. 2024-8-9

[5]
AAPM WGTG51 Report 385: Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy electron beams.

Med Phys. 2024-9

[6]
Metrology for advanced radiotherapy using particle beams with ultra-high dose rates.

Phys Med Biol. 2024-7-4

[7]
The effect of electron backscatter and charge build up in media on beam current transformer signal for ultra-high dose rate (FLASH) electron beam monitoring.

Phys Med Biol. 2024-5-7

[8]
A prototype scintillator real-time beam monitor for ultra-high dose rate radiotherapy.

Med Phys. 2024-4

[9]
Technical note: Commissioning of a linear accelerator producing ultra-high dose rate electrons.

Med Phys. 2024-2

[10]
Pulse parameter optimizer: an efficient tool for achieving prescribed dose and dose rate with electron FLASH platforms.

Phys Med Biol. 2023-9-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索