Suppr超能文献

PREDAC-FluB:基于蛋白质语言模型嵌入的卷积神经网络预测季节性乙型流感病毒的抗原簇

PREDAC-FluB: predicting antigenic clusters of seasonal influenza B viruses with protein language model embedding based convolutional neural network.

作者信息

Xie Wenping, Liu Jingze, Wang Chuan, Wang Jiangyuan, Han Wenjie, Peng Yousong, Du Xiangjun, Meng Jing, Ning Kang, Jiang Taijiao

机构信息

College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, Hubei Province, China.

Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.

出版信息

Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf308.

Abstract

Influenza poses a significant global public health threat, with vaccination being the most effective and economical preventive measure. However, these punctuated antigenic changes, particularly in HA, result in escape from the immunity that was induced by prior infection or vaccination. Accurately predicting antigenic variation and understanding the antigenic dynamics of influenza viruses are crucial for selecting appropriate vaccine strains, but no established methods exist for influenza B viruses. Therefore, we present PREDAC-FluB, a hybrid deep learning framework that integrates spatial feature extraction via CNN to model interactions in HA1 sequences, multimodal sequence representation combining ESM-2 embeddings with six physicochemical descriptors and continuous encoding (ESM2-7-features), and UMAP-guided clustering for antigenic cluster identification. Using data from 9036 B/Victoria-lineage and 4520 B/Yamagata-lineage influenza virus pair. PREDAC-FluB demonstrates superior performance over traditional machine learning methods in predicting antigenic variation in influenza viruses, successfully identifying major antigenic clusters. Specifically, PREDAC-FluB classified the B/Victoria lineage into nine antigenic clusters and the B/Yamagata lineage into three antigenic clusters. In five-fold cross-validation for B/Victoria viruses, PREDAC-FluB with ESM2-7-features encoding achieved AUROC values of 0.9961 on the validation set and 0.9856 on the independent test set. In retrospective testing for B/Victoria viruses, PREDAC-FluB achieved AUROC values ranging from 0.83 to 0.97, demonstrating high prediction accuracy and effectively capturing antigenic variation information. In conclusion, PREDAC-FluB is a robust tool for antigenic computation, capable of accurately predicting antigenic variation in influenza B viruses. Its high prediction accuracy makes it a promising auxiliary method for recommending future influenza vaccine strains.

摘要

流感对全球公共卫生构成重大威胁,接种疫苗是最有效且经济的预防措施。然而,这些间断的抗原性变化,尤其是血凝素(HA)的变化,会导致病毒逃避先前感染或接种疫苗所诱导的免疫。准确预测抗原变异并了解流感病毒的抗原动态对于选择合适的疫苗株至关重要,但目前尚无针对乙型流感病毒的既定方法。因此,我们提出了PREDAC - FluB,这是一种混合深度学习框架,它通过卷积神经网络(CNN)进行空间特征提取以对HA1序列中的相互作用进行建模,将ESM - 2嵌入与六个物理化学描述符及连续编码(ESM2 - 7 - 特征)相结合的多模态序列表示,以及用于抗原簇识别的基于均匀流形近似和投影(UMAP)的聚类。使用来自9036株B/维多利亚系和4520株B/山形系流感病毒对的数据,PREDAC - FluB在预测流感病毒的抗原变异方面表现优于传统机器学习方法,成功识别出主要抗原簇。具体而言,PREDAC - FluB将B/维多利亚系分为九个抗原簇,将B/山形系分为三个抗原簇。在对B/维多利亚病毒的五折交叉验证中,采用ESM2 - 7 - 特征编码的PREDAC - FluB在验证集上的曲线下面积(AUROC)值为0.9961,在独立测试集上为0.9856。在对B/维多利亚病毒的回顾性测试中,PREDAC - FluB的AUROC值在0.83至0.97之间,显示出高预测准确性并有效捕获了抗原变异信息。总之,PREDAC - FluB是一种强大的抗原计算工具,能够准确预测乙型流感病毒的抗原变异。其高预测准确性使其成为推荐未来流感疫苗株的有前景的辅助方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验