Suppr超能文献

将大语言模型整合到临床与转化研究的生物统计工作流程中。

Integrating large language models in biostatistical workflows for clinical and translational research.

作者信息

Grambow Steven C, Desai Manisha, Weinfurt Kevin P, Lindsell Christopher J, Pencina Michael J, Rende Lacey, Pomann Gina-Maria

机构信息

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.

Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

J Clin Transl Sci. 2025 May 30;9(1):e131. doi: 10.1017/cts.2025.10064. eCollection 2025.

Abstract

INTRODUCTION

Biostatisticians increasingly use large language models (LLMs) to enhance efficiency, yet practical guidance on responsible integration is limited. This study explores current LLM usage, challenges, and training needs to support biostatisticians.

METHODS

A cross-sectional survey was conducted across three biostatistics units at two academic medical centers. The survey assessed LLM usage across three key professional activities: communication and leadership, clinical and domain knowledge, and quantitative expertise. Responses were analyzed using descriptive statistics, while free-text responses underwent thematic analysis.

RESULTS

Of 208 eligible biostatisticians (162 staff and 46 faculty), 69 (33.2%) responded. Among them, 44 (63.8%) reported using LLMs; of the 43 who answered the frequency question, 20 (46.5%) used them daily and 16 (37.2%) weekly. LLMs improved productivity in coding, writing, and literature review; however, 29 of 41 respondents (70.7%) reported significant errors, including incorrect code, statistical misinterpretations, and hallucinated functions. Key verification strategies included expertise, external validation, debugging, and manual inspection. Among 58 respondents providing training feedback, 44 (75.9%) requested case studies, 40 (69.0%) sought interactive tutorials, and 37 (63.8%) desired structured training.

CONCLUSIONS

LLM usage is notable among respondents at two academic medical centers, though response patterns likely reflect early adopters. While LLMs enhance productivity, challenges like errors and reliability concerns highlight the need for verification strategies and systematic validation. The strong interest in training underscores the need for structured guidance. As an initial step, we propose eight core principles for responsible LLM integration, offering a preliminary framework for structured usage, validation, and ethical considerations.

摘要

引言

生物统计学家越来越多地使用大语言模型(LLMs)来提高效率,但关于负责任整合的实用指南却很有限。本研究探讨了当前大语言模型的使用情况、挑战以及支持生物统计学家的培训需求。

方法

在两个学术医疗中心的三个生物统计学部门进行了横断面调查。该调查评估了大语言模型在三项关键专业活动中的使用情况:沟通与领导力、临床和领域知识以及定量专业知识。使用描述性统计分析回复,同时对自由文本回复进行主题分析。

结果

在208名符合条件的生物统计学家(162名工作人员和46名教员)中,69人(33.2%)回复。其中,44人(63.8%)报告使用过大语言模型;在回答频率问题的43人中,20人(46.5%)每天使用,16人(37.2%)每周使用。大语言模型提高了编码、写作和文献综述的效率;然而,41名受访者中有29人(70.7%)报告了重大错误,包括代码错误、统计误解和虚构功能。关键的验证策略包括专业知识、外部验证、调试和人工检查。在提供培训反馈的58名受访者中,44人(75.9%)要求提供案例研究,40人(69.0%)寻求交互式教程,37人(63.8%)希望进行结构化培训。

结论

在两个学术医疗中心的受访者中,大语言模型的使用情况值得关注,尽管回复模式可能反映了早期采用者。虽然大语言模型提高了效率,但错误和可靠性等挑战凸显了验证策略和系统验证的必要性。对培训的强烈兴趣强调了结构化指导的必要性。作为第一步,我们提出了八项负责任整合大语言模型的核心原则,为结构化使用、验证和伦理考量提供了一个初步框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ca9/12260977/6f932b403f02/S2059866125100642_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验