Pandey Shraddha, Taso Manuel, Fan Zhaoyang, Guggenberger Konstanze V, Tran Alexia, Raymond Scott B, Lyo Shawn, Sanchez Marisa, Sellers Rob, Savatovsky Julien, Zhu Chengcheng, Cao Quy, Song Jae W, Tisdall M Dylan
medRxiv. 2025 Jun 24:2025.06.23.25330079. doi: 10.1101/2025.06.23.25330079.
Clinical intracranial vessel wall imaging (VWI) requires high spatial resolution leading to long scan times and artifacts.
To accelerate standard-of-care (SOC) 3D T1-weighted variable-flip-angle turbo-spin-echo (VFA-TSE) sequence with parallel imaging (Generalized Autocalibrating Partially Parallel Acquisitions, GRAPPA) using compressed sensing (CS) or Controlled Aliasing in Parallel Imaging Results in Higher Acceleration (CAIPIRINHA, CAIPI) with either standard or large field-of-view (FOV) configurations to reduce scan time, artifacts and accommodate head sizes.
Prospective study.
Ten healthy volunteers.
FIELD STRENGTH/SEQUENCE: 3 Telsa, 20-channel head coil, T1-weighted VFA-TSE.
Accelerated sequences were compared to SOC GRAPPA (R=2), including standard FOV CAIPI (SFCAIPI, R=4), CS (SFCS7, R=7), and large FOV CS (LFCS7, R=7; LFCS10, R=10). Four neuroradiologists rated image quality (IQ) and signal-to-noise ratio (SNR) using a 4-point Likert scale. Scores of 3-4 were categorized as clinically interpretable. Lumen and wall diameters were measured.
Descriptive statistics are reported. McNemar's test compared proportions of IQ- and SNR-based clinically interpretable scans between relevant sequences of interest. Inter- and intra-rater reliabilities were calculated with Fleiss Kappa and weighted Cohen's Kappa, respectively. Lumen and wall diameters of the CS- and CAIPI-accelerated sequences were compared to SOC using paired t-tests.
SFCAIPI showed the lowest mean IQ and SNR scores. SFCS7 showed no significant difference in the proportion of IQ-based clinically interpretable scans compared to SFGRAPPA. When testing FOV, LFCS7 (35/40 scans; time of acquisition (TA)=3:45) showed a significantly higher proportion of IQ-based clinically interpretable scans compared to SFCS7 (27/40, p=0.03; TA=6:37). Upon increasing acceleration (R=10), there was no difference in the proportion of IQ-based clinically interpretable scans between LFCS7 and LFCS10 (36/40, p=0.65). Large FOV eliminated aliasing artifacts compared standard FOV (aliasing in 7 of 10 subjects). LFCS10 (TA=4:55) achieved a 50.6% reduction in TA relative to SFGRAPPA (TA=9:57).
Large FOV CS VWI sequence with 10x acceleration achieved a 50.6% reduction in scan time while delivering image quality comparable to SOC standard FOV GRAPPA.
临床颅内血管壁成像(VWI)需要高空间分辨率,这导致扫描时间长且会出现伪影。
使用压缩感知(CS)或并行成像中的可控混叠实现更高加速(CAIPIRINHA,CAIPI),对标准护理(SOC)3D T1加权可变翻转角涡轮自旋回波(VFA-TSE)序列与并行成像(广义自校准部分并行采集,GRAPPA)进行加速,采用标准或大视野(FOV)配置,以减少扫描时间、伪影并适应不同头型。
前瞻性研究。
10名健康志愿者。
场强/序列:3特斯拉,20通道头部线圈,T1加权VFA-TSE。
将加速序列与SOC GRAPPA(R = 2)进行比较,包括标准FOV CAIPI(SFCAIPI,R = 4)、CS(SFCS7,R = 7)以及大FOV CS(LFCS7,R = 7;LFCS10,R = 10)。四名神经放射科医生使用4点李克特量表对图像质量(IQ)和信噪比(SNR)进行评分。3至4分被归类为临床可解释。测量管腔和血管壁直径。
报告描述性统计数据。McNemar检验比较了相关感兴趣序列之间基于IQ和SNR的临床可解释扫描的比例。评分者间和评分者内信度分别使用Fleiss Kappa和加权Cohen's Kappa进行计算。使用配对t检验将CS和CAIPI加速序列的管腔和血管壁直径与SOC进行比较。
SFCAIPI的平均IQ和SNR得分最低。与SFGRAPPA相比,SFCS7在基于IQ的临床可解释扫描比例上无显著差异。在测试FOV时,与SFCS7(27/40,p = 0.03;采集时间(TA)=6:37)相比,LFCS7(35/40扫描;TA = 3:45)基于IQ的临床可解释扫描比例显著更高。在增加加速倍数(R = 10)后,LFCS7和LFCS10之间基于IQ的临床可解释扫描比例无差异(36/40,p = 0.65)。与标准FOV相比,大FOV消除了混叠伪影(10名受试者中有7名出现混叠)。LFCS10(TA = 4:55)相对于SFGRAPPA(TA = 9:57)的采集时间减少了50.6%。
具有10倍加速的大FOV CS VWI序列在扫描时间上减少了50.6%,同时提供了与SOC标准FOV GRAPPA相当的图像质量。