Doglio Matteo, Rana Jyoti, Stucchi Adriana, Melero Maite-Muñoz, Ugolini Alessia, Jofra Tatiana, Toma Cristiano, Bercher-Brayer Clara, Carulli Pierluigi, Kumar Sandeep, Monti Paolo, Martini Elisa, Thirumurugan Senthilkumar, Biswas Moanaro, Bonini Chiara, Fousteri Georgia
Experimental Hematology Unit, Division of Immunology Transplantation and Infectious Diseases (DITID), IRCCS San Raffaele Scientific Institute, Milan, Italy.
Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, United States.
Front Immunol. 2025 Jul 1;16:1513009. doi: 10.3389/fimmu.2025.1513009. eCollection 2025.
Secondary and tertiary lymphoid structures are a critical target of suppression in many autoimmune disorders, protein replacement therapies, and in transplantation. Although antigen-specific regulatory T cells (Tregs), such as chimeric antigen receptor (CAR) Tregs, generally persist longer and localize to target tissues more effectively than polyclonal Tregs in animal models, their numbers still progressively decline over time. A potential approach to maximize Treg activity in vivo is the expression of chemokine receptors such as CXCR5, which would enable localization of a greater number of engineered cells at sites of antigen presentation. Indeed, CXCR5 expression on follicular T helper cells and follicular Tregs enables migration toward lymph nodes, B cell zones, and tertiary lymphoid structures that appear in chronically inflamed non-lymphoid tissues.
In this study, we generated human and murine CXCR5 co-expressing engineered receptor Tregs and tested them in preclinical mouse models of allo-immunity and hemophilia A, respectively. Additionally, we engineered a murine CXCR5 co-expressing clotting factor VIII (FVIII) specific T cell receptor fusion construct epsilon (FVIII TRuCe CXCR5) Treg to suppress anti-drug antibody development in a model of FVIII protein replacement therapy for hemophilia A.
In vitro, anti-HLA-A2 CXCR5+ CAR-Tregs showed enhanced migratory and antigen-specific suppressive capacities compared to untransduced Tregs. When injected into an NSG mouse model of HLA-A2+ pancreatic islet transplantation, anti-HLA-A2 CXCR5+ CAR-Tregs maintained a good safety profile allowing for long-term graft survival in contrast to anti-HLA-A2 CXCR5+ conventional CAR-T (Tconv) cells that eliminated the graft. Similarly, FVIII TRuCe CXCR5 Treg demonstrated increased in vivo persistence and suppressive capacity in a murine model of hemophilia A.
Collectively, our findings indicate that CXCR5 co-expression is safe and enhances in vivo localization and persistence in target tissues. This strategy can potentially promote targeted tolerance without the risk of off-target effects in multiple disease models.
二级和三级淋巴结构是许多自身免疫性疾病、蛋白质替代疗法及移植中免疫抑制的关键靶点。尽管抗原特异性调节性T细胞(Tregs),如嵌合抗原受体(CAR)Tregs,在动物模型中通常比多克隆Tregs持续时间更长且更有效地定位于靶组织,但其数量仍会随时间逐渐减少。一种在体内最大化Treg活性的潜在方法是表达趋化因子受体,如CXCR5,这将使更多经基因工程改造的细胞定位于抗原呈递部位。事实上,滤泡辅助性T细胞和滤泡调节性T细胞上的CXCR5表达使其能够向淋巴结、B细胞区以及慢性炎症非淋巴组织中出现的三级淋巴结构迁移。
在本研究中,我们构建了共表达人源和鼠源CXCR5的工程化受体Tregs,并分别在同种免疫和血友病A的临床前小鼠模型中对其进行测试。此外,我们构建了一种共表达鼠源CXCR5的凝血因子VIII(FVIII)特异性T细胞受体融合构建体epsilon(FVIII TRuCe CXCR5)Treg,以在血友病A的FVIII蛋白替代疗法模型中抑制抗药物抗体的产生。
在体外,与未转导的Tregs相比,抗HLA - A2 CXCR5 + CAR - Tregs表现出增强的迁移能力和抗原特异性抑制能力。当注射到HLA - A2 +胰岛移植的NSG小鼠模型中时,抗HLA - A2 CXCR5 + CAR - Tregs保持了良好的安全性,使移植物能够长期存活,而抗HLA - A2 CXCR5 +传统CAR - T(Tconv)细胞则消除了移植物。同样,FVIII TRuCe CXCR5 Treg在血友病A的小鼠模型中表现出体内持久性和抑制能力增强。
总体而言,我们的研究结果表明,共表达CXCR5是安全的,并能增强在体内靶组织中的定位和持久性。该策略可能在多种疾病模型中促进靶向性耐受而无脱靶效应风险。