Chierici Andrea, Guzzi Lisa, Goffart Sebastien, Kamoun Nizar, Gargiulo Manuel, Chevallier Patrick, Iannelli Antonio, Anty Rodolphe, Delingette Hervé, Lareyre Fabien, Raffort Juliette
Digestive Surgery, Centre Hospitalier Universitaire de Nice, Nice, FRA.
National Institute for Research in Digital Science and Technology (INRIA), Epione Team, Université Côte d'Azur, Sophia Antipolis, FRA.
Cureus. 2025 Jun 15;17(6):e86072. doi: 10.7759/cureus.86072. eCollection 2025 Jun.
Artificial intelligence is gaining increasing interest in medical image segmentation, including liver cancer. However, the literature lacks model implementation in the setting of colorectal liver metastases for treatment planning.
We collected the portal phase abdominal CT scan images from the Nice University Hospital hepatobiliary oncologic multidisciplinary discussion of 80 patients with colorectal liver metastases, before treatment. Data from 70 patients was exploited to train and test the nnU-Net model to automatically perform parenchyma, portal vein, hepatic veins, cava vein, and colorectal liver metastases segmentation. Data from the remaining 10 patients was used for external validation.
The Dice score for parenchyma segmentation was 0,964 and 0,955 in the test and validation dataset, respectively. For portal vein segmentation, a centerline Dice (clDice) of 0,758 and 0,736 was highlighted, while for hepatic veins it resulted to be 0,758 and 0,577. Cava vein segmentation showed a clDice of 0,805 and 0,734. Concerning colorectal liver metastases, the Dice score was 0,693 and 0,61.
The nnU-Net showed promising segmentation results, especially for liver parenchyma. Its task could be useful to help physicians decide which is the best treatment strategy based on individual anatomical characteristics and disease extension. Training the model on a larger dataset with the same characteristics could help improve segmentation performances.
人工智能在包括肝癌在内的医学图像分割领域越来越受到关注。然而,在结直肠癌肝转移治疗规划方面,文献中缺乏模型实施情况。
我们收集了尼斯大学医院肝胆肿瘤多学科讨论的80例结直肠癌肝转移患者治疗前的门静脉期腹部CT扫描图像。利用70例患者的数据训练和测试nnU-Net模型,以自动进行实质、门静脉、肝静脉、腔静脉和结直肠癌肝转移的分割。其余10例患者的数据用于外部验证。
在测试和验证数据集中,实质分割的Dice分数分别为0.964和0.955。对于门静脉分割,中心线Dice(clDice)分别为0.758和0.736,而对于肝静脉,结果分别为0.758和0.577。腔静脉分割的clDice为0.805和0.734。关于结直肠癌肝转移,Dice分数为0.693和0.61。
nnU-Net显示出有前景的分割结果,尤其是对于肝实质。其任务有助于帮助医生根据个体解剖特征和疾病范围决定最佳治疗策略。在具有相同特征的更大数据集上训练该模型可能有助于提高分割性能。