Suppr超能文献

卷积神经网络在肺结节检测中的诊断性能:一项系统评价与Meta分析

The diagnosis performance of convolutional neural network in the detection of pulmonary nodules: a systematic review and meta-analysis.

作者信息

Zhang Xinyue, Liu Bo, Liu Kefu, Wang Lina

机构信息

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China.

Department of radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.

出版信息

Acta Radiol. 2023 Dec;64(12):2987-2998. doi: 10.1177/02841851231201514. Epub 2023 Sep 24.

Abstract

BACKGROUND

Pulmonary nodules are an early imaging indication of lung cancer, and early detection of pulmonary nodules can improve the prognosis of lung cancer. As one of the applications of machine learning, the convolutional neural network (CNN) applied to computed tomography (CT) imaging data improves the accuracy of diagnosis, but the results could be more consistent.

PURPOSE

To evaluate the diagnostic performance of CNN in assisting in detecting pulmonary nodules in CT images.

MATERIAL AND METHODS

PubMed, Cochrane Library, Web of Science, Elsevier, CNKI and Wanfang databases were systematically retrieved before 30 April 2023. Two reviewers searched and checked the full text of articles that might meet the criteria. The reference criteria are joint diagnoses by experienced physicians. The pooled sensitivity, specificity and the area under the summary receiver operating characteristic curve (AUC) were calculated by a random-effects model. Meta-regression analysis was performed to explore potential sources of heterogeneity.

RESULTS

Twenty-six studies were included in this meta-analysis, involving 2,391,702 regions of interest, comprising segmented images with a few wide pixels. The combined sensitivity and specificity values of the CNN model in detecting pulmonary nodules were 0.93 and 0.95, respectively. The pooled diagnostic odds ratio was 291. The AUC was 0.98. There was heterogeneity in sensitivity and specificity among the studies. The results suggested that data sources, pretreatment methods, reconstruction slice thickness, population source and locality might contribute to the heterogeneity of these eligible studies.

CONCLUSION

The CNN model can be a valuable diagnostic tool with high accuracy in detecting pulmonary nodules.

摘要

背景

肺结节是肺癌的早期影像学表现,早期发现肺结节可改善肺癌的预后。作为机器学习的应用之一,应用于计算机断层扫描(CT)成像数据的卷积神经网络(CNN)提高了诊断准确性,但结果可能更具一致性。

目的

评估CNN辅助检测CT图像中肺结节的诊断性能。

材料与方法

于2023年4月30日前系统检索PubMed、Cochrane图书馆、Web of Science、爱思唯尔、中国知网和万方数据库。两名评审员检索并检查了可能符合标准的文章全文。参考标准为经验丰富的医生的联合诊断。采用随机效应模型计算合并敏感度、特异度和汇总受试者工作特征曲线下面积(AUC)。进行Meta回归分析以探索异质性的潜在来源。

结果

本Meta分析纳入26项研究,涉及2391702个感兴趣区域,包括具有少量宽像素的分割图像。CNN模型检测肺结节的合并敏感度和特异度值分别为0.93和0.95。合并诊断比值比为291。AUC为0.98。各研究之间在敏感度和特异度方面存在异质性。结果表明,数据来源、预处理方法、重建切片厚度、人群来源和地区可能是这些合格研究异质性的原因。

结论

CNN模型可成为检测肺结节的一种具有高准确性的有价值的诊断工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验