Lüthi Bolaji N, Semple Jennifer I, Haemmerli Anja, Thapliyal Saurabh, Ghadage Kalyan, Stojanovski Klement, D'Asaro Dario, Das Moushumi, Gilbert Nick, Glauser Dominique A, Towbin Benjamin, Jost Daniel, Meister Peter
bioRxiv. 2025 Jun 23:2023.07.14.549011. doi: 10.1101/2023.07.14.549011.
Transcriptional enhancers must locate their target genes with both precision and efficiency. In mammals, this specificity is facilitated by topologically associated domains (TADs), which restrict the enhancer search space through three-dimensional genome organization. In contrast, the nematode genome lacks such TAD-based segmentation despite harboring over 30'000 sequences with chromatin signature characteristic of enhancers, thereby raising the question of how enhancer-promoter specificity is achieved. Using high-resolution Hi-C in , we identify distinct 3D chromatin structures surrounding active enhancers, which we term fountains. These structures span 38 kb in average, are unique to active enhancers, and are enriched for the major somatic cohesin complex. Fountains collapse upon cohesin cleavage, indicating their cohesin dependency. Notably, fountains accumulate topological stress, as evidenced by the enrichment of topoisomerases and the psoralen-binding signature of negatively-supercoiled DNA. Functionally, fountain disassembly correlates with transcriptional upregulation of active enhancer-proximal genes, suggesting that fountains act as spatial repressors of enhancer activity. This repression is particularly pronounced for neuronal genes, including the gene, which becomes upregulated, switches isoform and transcription start site upon cohesin loss in a pair of head neurons. Behaviorally, cohesin cleavage alters nematode movement and foraging behavior, linking enhancer-driven transcriptional changes to neural circuit function and organismal phenotypes, reminiscent of pathologies caused by cohesin mutations in humans. Together, our findings uncover fountains as a novel 3D chromatin feature that modulates enhancer activity in a TAD-less genome, establishing a mechanistic link between genome architecture, gene regulation and behavior.
转录增强子必须精确且高效地找到其靶基因。在哺乳动物中,拓扑相关结构域(TADs)有助于这种特异性,它通过三维基因组组织限制增强子的搜索空间。相比之下,线虫基因组缺乏这种基于TAD的分割,尽管含有超过30000个具有增强子染色质特征的序列,从而引发了如何实现增强子 - 启动子特异性的问题。通过在[具体物种]中使用高分辨率Hi-C,我们鉴定出围绕活性增强子的独特三维染色质结构,我们将其称为“喷泉”。这些结构平均跨度为38 kb,是活性增强子所特有的,并且富含主要的体细胞黏连蛋白复合体。“喷泉”在黏连蛋白切割后会瓦解,表明它们对黏连蛋白的依赖性。值得注意的是,“喷泉”积累拓扑应力,拓扑异构酶的富集和负超螺旋DNA的补骨脂素结合特征证明了这一点。在功能上,“喷泉”的解体与活性增强子近端基因的转录上调相关,表明“喷泉”作为增强子活性的空间抑制因子发挥作用。这种抑制对于神经元基因尤为明显,包括[具体基因],该基因在一对头部神经元中黏连蛋白缺失时会上调、切换异构体和转录起始位点。在行为上,黏连蛋白切割会改变线虫的运动和觅食行为,将增强子驱动的转录变化与神经回路功能和生物体表型联系起来,这让人联想到人类黏连蛋白突变引起的病理情况。总之,我们的发现揭示了“喷泉”是一种新型的三维染色质特征,它在无TAD的基因组中调节增强子活性,在基因组结构、基因调控和行为之间建立了一种机制性联系。