Paulmann Anastasia, Cox Matthew D, Boewer Tom, Somers Hannah M, Fuqua Heath, Seaman Ryan P, Graber Joel H, Mahajan Anchal, Johnson Cory P, Beverly-Staggs Laura L, Sandhi Sonia, Schenk Heiko, Haller Hermann
Mount Desert Island Biological Laboratory MDIBL, Bar Harbor, Maine, USA.
Division of Nephrology and Hypertension, Hannover Medical School MHH, Hannover, Germany.
bioRxiv. 2025 Jun 28:2025.06.27.654312. doi: 10.1101/2025.06.27.654312.
Aging is associated with progressive loss of renal function and vascular structure, with and without chronic kidney disease. However, the mechanisms driving renal vascular aging and potential therapeutic interventions remain poorly understood.
To model this state-of-affairs, we used African turquoise killifish (Nothobranchius furzeri), a naturally short-lived vertebrate. We then inhibited the sodium-glucose co-transporter 2 using dapagliflozin (SGLT2i) to test a potential therapeutic intervention. Histological, immunofluorescent, and 3D vascular imaging were used to evaluate glomerular, tubular, vascular and functional changes. Single-nuclei transcriptomic profiling was performed on whole kidneys to identify age- and treatment-associated molecular signatures.
Aged killifish kidneys exhibited hallmark features of renal aging, including glomerulosclerosis, tubular fibrosis, and vascular rarefaction. Functional changes included increased proteinuria and altered tubular transporter function. Transcriptomic profiling revealed a metabolic shift from oxidative phosphorylation to glycolysis and upregulation of pro-inflammatory pathways. Aged vasculature also displayed a marked reduction in tight junctions and cell-cell contacts. SGLT2i attenuated age-related vascular rarefaction, preserved functional capillary networks, reduced albuminuria, restored a youthful transcriptional profile and enhanced intercellular signaling. However, killifish lifespan was not extended.
This study establishes the killifish as a translational model for investigating renal vascular aging. We show that SGLT2i preserves renal microvascular structure and function, reduces proteinuria, and reprograms the aged transcriptome. These results support a vascular-protective role of SGLT2i in mitigating age-related renal deterioration.
衰老与肾功能和血管结构的渐进性丧失有关,无论是否患有慢性肾脏病。然而,驱动肾血管衰老的机制以及潜在的治疗干预措施仍知之甚少。
为了模拟这种情况,我们使用了非洲青鳉(Nothobranchius furzeri),一种自然寿命较短的脊椎动物。然后,我们使用达格列净(钠-葡萄糖协同转运蛋白2抑制剂)来测试一种潜在的治疗干预措施。采用组织学、免疫荧光和三维血管成像来评估肾小球、肾小管、血管和功能变化。对整个肾脏进行单核转录组分析,以确定与年龄和治疗相关的分子特征。
衰老的青鳉肾脏表现出肾衰老的标志性特征,包括肾小球硬化、肾小管纤维化和血管稀疏。功能变化包括蛋白尿增加和肾小管转运蛋白功能改变。转录组分析显示代谢从氧化磷酸化向糖酵解转变,促炎途径上调。衰老的血管还显示紧密连接和细胞间接触显著减少。钠-葡萄糖协同转运蛋白2抑制剂减轻了与年龄相关的血管稀疏,保留了功能性毛细血管网络,减少了蛋白尿,恢复了年轻的转录谱并增强了细胞间信号传导。然而,青鳉的寿命并未延长。
本研究确立了青鳉作为研究肾血管衰老的转化模型。我们表明,钠-葡萄糖协同转运蛋白2抑制剂保留了肾微血管结构和功能,减少了蛋白尿,并重新编程了衰老的转录组。这些结果支持钠-葡萄糖协同转运蛋白2抑制剂在减轻与年龄相关的肾脏恶化方面具有血管保护作用。