Bhattacharyya Sanchari, Ranganathan Srivastav, Chowdhury Sourav, Adkar Bharat V, Khrapko Mark, Shakhnovich Eugene I
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138.
bioRxiv. 2025 Jun 16:2024.02.17.580827. doi: 10.1101/2024.02.17.580827.
Enzymes in a pathway often form metabolons through weak protein-protein interactions (PPI) that localize and protect labile metabolites. Due to their transient nature, the structural architecture of these enzyme assemblies has largely remained elusive, limiting our abilities to re-engineer novel metabolic pathways. Here we delineate a complete PPI map of 1225 interactions in the 1-carbon metabolism pathway using bimolecular fluorescence complementation that can capture transient interactions and show strong intra- and inter- pathway clusters within the folate and purine biosynthesis pathways. Scanning mutagenesis experiments along with AlphaFold predictions and meta-dynamics simulations reveal that most proteins use conserved "dedicated" interfaces distant from their active sites to interact with multiple partners. Diffusion-reaction simulations with shared interaction surfaces and realistic PPI networks reveal a dramatic speedup in metabolic pathway fluxes. Overall, this study sheds light on the fundamental features of metabolon biophysics and structural aspects of transient binary complexes.
一条途径中的酶通常通过弱蛋白质-蛋白质相互作用(PPI)形成代谢体,这些相互作用可定位并保护不稳定的代谢物。由于其瞬态性质,这些酶组装体的结构架构在很大程度上仍然难以捉摸,限制了我们重新设计新型代谢途径的能力。在此,我们使用双分子荧光互补技术描绘了一碳代谢途径中1225种相互作用的完整PPI图谱,该技术能够捕获瞬态相互作用,并显示叶酸和嘌呤生物合成途径内强大的途径内和途径间簇。扫描诱变实验以及AlphaFold预测和元动力学模拟表明,大多数蛋白质使用远离其活性位点的保守“专用”界面与多个伙伴相互作用。具有共享相互作用表面和实际PPI网络的扩散-反应模拟揭示了代谢途径通量的显著加速。总体而言,这项研究揭示了代谢体生物物理学的基本特征以及瞬态二元复合物的结构方面。