Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kindgdom.
Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13238-13247. doi: 10.1073/pnas.1917569117. Epub 2020 Jun 1.
One of the key mechanisms used by cells to control the spatiotemporal organization of their many components is the formation and dissolution of biomolecular condensates through liquid-liquid phase separation (LLPS). Using a minimal coarse-grained model that allows us to simulate thousands of interacting multivalent proteins, we investigate the physical parameters dictating the stability and composition of multicomponent biomolecular condensates. We demonstrate that the molecular connectivity of the condensed-liquid network-i.e., the number of weak attractive protein-protein interactions per unit of volume-determines the stability (e.g., in temperature, pH, salt concentration) of multicomponent condensates, where stability is positively correlated with connectivity. While the connectivity of scaffolds (biomolecules essential for LLPS) dominates the phase landscape, introduction of clients (species recruited via scaffold-client interactions) fine-tunes it by transforming the scaffold-scaffold bond network. Whereas low-valency clients that compete for scaffold-scaffold binding sites decrease connectivity and stability, those that bind to alternate scaffold sites not required for LLPS or that have higher-than-scaffold valencies form additional scaffold-client-scaffold bridges increasing stability. Proteins that establish more connections (via increased valencies, promiscuous binding, and topologies that enable multivalent interactions) support the stability of and are enriched within multicomponent condensates. Importantly, proteins that increase the connectivity of multicomponent condensates have higher critical points as pure systems or, if pure LLPS is unfeasible, as binary scaffold-client mixtures. Hence, critical points of accessible systems (i.e., with just a few components) might serve as a unified thermodynamic parameter to predict the composition of multicomponent condensates.
细胞控制其许多成分的时空组织的一个关键机制是通过液-液相分离 (LLPS) 形成和溶解生物分子凝聚物。使用允许我们模拟数千个相互作用的多价蛋白质的最小粗粒度模型,我们研究了决定多组分生物分子凝聚物稳定性和组成的物理参数。我们证明了凝聚态液体网络的分子连通性——即单位体积内的弱吸引蛋白质-蛋白质相互作用的数量——决定了多组分凝聚物的稳定性(例如在温度、pH 值、盐浓度下),其中稳定性与连通性呈正相关。虽然支架(对于 LLPS 必不可少的生物分子)的连通性主导着相图,但通过改变支架-支架键网络,客户的引入(通过支架-客户相互作用招募的物种)对其进行微调。低价客户与支架-支架结合位点竞争,降低了连通性和稳定性,而那些结合到不需要 LLPS 的替代支架位点或具有高于支架价数的客户则形成额外的支架-客户-支架桥,增加了稳定性。通过增加价数、混杂结合和能够实现多价相互作用的拓扑结构来建立更多连接的蛋白质支持多组分凝聚物的稳定性并在其中富集。重要的是,增加多组分凝聚物连通性的蛋白质在纯系统中或在纯 LLPS 不可行时作为二元支架-客户混合物具有更高的临界点。因此,可访问系统(即只有几个组件)的临界点可能作为预测多组分凝聚物组成的统一热力学参数。