Ayala-Hernandez Maria G, Torales Anetzy Bermudez, Tan Hannah Camille, Montgomery Claire B, Padavannil Abhilash, Cortopassi Gino, Letts James A
Department of Molecular and Cellular Biology, University of California, Davis, United States.
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States.
bioRxiv. 2025 Jun 18:2025.06.17.660237. doi: 10.1101/2025.06.17.660237.
Mutations in mitochondrial complex I can cause severe metabolic disease. Although no treatments are available for complex I deficiencies, chronic hypoxia improves lifespan and function in a mouse model of the severe mitochondrial disease Leigh syndrome caused by mutation of complex I subunit NDUFS4. To understand the molecular mechanism of NDUFS4 mutant pathophysiology and hypoxia rescue, we investigated the structure of complex I in respiratory supercomplexes isolated from NDUFS4 mutant mice. We identified complex I assembly intermediates bound to complex III, proving the cooperative assembly model. Further, an accumulated complex I intermediate is structurally consistent with pathological oxygen-dependent reverse electron transfer, revealing unanticipated pathophysiology and hypoxia rescue mechanisms. Thus, the build-up of toxic intermediates and not simply decreases in complex I levels underlie mitochondrial disease.
线粒体复合体I中的突变可导致严重的代谢疾病。尽管目前尚无针对复合体I缺陷的治疗方法,但慢性缺氧可延长由复合体I亚基NDUFS4突变引起的严重线粒体疾病 Leigh 综合征小鼠模型的寿命并改善其功能。为了解NDUFS4突变体病理生理学和缺氧挽救的分子机制,我们研究了从NDUFS4突变小鼠分离的呼吸超复合物中复合体I的结构。我们鉴定出与复合体III结合的复合体I组装中间体,证实了协同组装模型。此外,积累的复合体I中间体在结构上与病理性氧依赖性逆向电子传递一致,揭示了意想不到的病理生理学和缺氧挽救机制。因此,有毒中间体的积累而非单纯的复合体I水平降低是线粒体疾病的基础。