Suppr超能文献

基于独立性的因果发现分析表明,统计上不显著的区域在功能上具有重要意义。

Independence-based causal discovery analysis reveals statistically non-significant regions to be functionally significant.

作者信息

Lewis Madison, Eack Shaun, Theis Nicholas, Keshavan Matcheri S, Prasad Konasale M

机构信息

Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15213.

Department of Social Work, University of Pittsburgh School of Social Work, Pittsburgh, PA 15213.

出版信息

bioRxiv. 2025 Jun 25:2025.06.19.660609. doi: 10.1101/2025.06.19.660609.

Abstract

BACKGROUND AND HYPOTHESIS

Traditional fMRI analyses often ignore regions that fail to reach statistical significance, assuming they are biologically unimportant. We tested the accuracy of this assumption using causal discovery based-analysis that go beyond associations/correlations to test the causality of one region's influence over the other. We hypothesized that the network of statistically significant (active network, AN) and non-significant regions (silent network, SN) interact and their features will causally influence psychopathology severity and working memory performance.

STUDY DESIGN

We examined AN and SN during N-BACK task on 25 FHR and 37 controls. Clusters with significantly different activations were juxtaposed to 360 Glasser atlas parcellations. The PC algorithm for causal discovery was implemented. Connectivity of regions with the highest alpha-centrality (HAC) were examined.

RESULTS

Seventy-seven Glasser regions were in the AN and the rest were silent nodes. Two regions showed HAC for FHR and HC. Among controls, one HAC region was silent (auditory association cortex) and the other one was active (insula). Among FHR, both were silent nodes (early auditory cortex). These HAC regions in both groups had bidirectional directed edges between each other forming a reciprocal circuit whose edge-weights causally "increased" magical ideation severity.

CONCLUSION

Causal connectivity between SN and AN suggests that the statistically non-significant and significant regions influence each other. Our findings question the merit of ignoring statistically non-significant regions and exclusively including statistically significant regions in the pathophysiological models. Our study suggests that causality analysis should receive greater attention.

摘要

背景与假设

传统的功能磁共振成像(fMRI)分析通常会忽略未达到统计学显著性的区域,认为它们在生物学上不重要。我们使用基于因果发现的分析方法来检验这一假设的准确性,这种方法超越了关联/相关性分析,以测试一个区域对另一个区域影响的因果关系。我们假设具有统计学显著性的区域网络(活跃网络,AN)和无显著性的区域网络(沉默网络,SN)相互作用,并且它们的特征会因果性地影响精神病理学严重程度和工作记忆表现。

研究设计

我们在25名患有家族性高风险精神分裂症(FHR)个体和37名对照组个体进行N-回溯任务期间,对AN和SN进行了检查。将激活存在显著差异的簇与360个格拉斯哥图谱分区并列。实施了用于因果发现的PC算法。检查了具有最高α中心性(HAC)的区域的连通性。

结果

77个格拉斯哥区域属于AN,其余为沉默节点。有两个区域在FHR个体和健康对照(HC)个体中显示出HAC。在对照组中,一个具有HAC的区域是沉默的(听觉联合皮层),另一个是活跃的(脑岛)。在FHR个体中,两个区域都是沉默节点(早期听觉皮层)。两组中的这些具有HAC的区域彼此之间具有双向有向边,形成了一个相互的回路,其边权重因果性地“增加”了奇幻思维的严重程度。

结论

SN和AN之间的因果连通性表明,统计学上无显著性和有显著性的区域相互影响。我们的研究结果质疑了在病理生理模型中忽略统计学上无显著性区域而仅纳入统计学上有显著性区域的做法的价值。我们的研究表明,因果关系分析应受到更多关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/652c/12262342/917bc92e983f/nihpp-2025.06.19.660609v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验