Suppr超能文献

使用具有结构约束功能连接组的图卷积网络对精神病谱系障碍进行分类。

Classification of psychosis spectrum disorders using graph convolutional networks with structurally constrained functional connectomes.

作者信息

Lewis Madison, Jiang Wenlong, Theis Nicholas D, Cape Joshua, Prasad Konasale M

机构信息

Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, United States.

Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, United States.

出版信息

Neural Netw. 2025 Jan;181:106771. doi: 10.1016/j.neunet.2024.106771. Epub 2024 Sep 30.

Abstract

This article considers the problem of classifying individuals in a dataset of diverse psychosis spectrum conditions, including persons with subsyndromal psychotic-like experiences (PLEs) and healthy controls. This task is more challenging than the traditional problem of distinguishing patients with a diagnosed disorder from controls using brain network features, since the neurobiological differences between PLE individuals and healthy persons are less pronounced. Further, examining a transdiagnostic sample compared to controls is concordant with contemporary approaches to understanding the full spectrum of neurobiology of psychoses. We consider both support vector machines (SVMs) and graph convolutional networks (GCNs) for classification, with a variety of edge selection methods for processing the inputs. We also employ the MultiVERSE algorithm to generate network embeddings of the functional and structural networks for each subject, which are used as inputs for the SVMs. The best models among SVMs and GCNs yielded accuracies >63%. Investigation of network connectivity between persons with PLE and controls identified a region within the right inferior parietal cortex, called the PGi, as a central region for communication among modules (network hub). Class activation mapping revealed that the PLE group had salient regions in the dorsolateral prefrontal, orbital and polar frontal cortices, and the lateral temporal cortex, whereas the controls did not. Our study demonstrates the potential usefulness of deep learning methods to distinguish persons with subclinical psychosis and diagnosable disorders from controls. In the long term, this could help improve accuracy and reliability of clinical diagnoses, provide neurobiological bases for making diagnoses, and initiate early intervention strategies.

摘要

本文探讨了在一个包含多种精神病谱系疾病个体的数据集(包括有亚综合征性精神病样体验(PLEs)的人和健康对照)中进行个体分类的问题。这项任务比使用脑网络特征将已确诊疾病患者与对照区分开来的传统问题更具挑战性,因为PLE个体与健康人之间的神经生物学差异不太明显。此外,与对照相比检查一个跨诊断样本与理解精神病神经生物学全谱的当代方法是一致的。我们考虑使用支持向量机(SVM)和图卷积网络(GCN)进行分类,并采用多种边选择方法来处理输入。我们还使用MultiVERSE算法为每个受试者生成功能和结构网络的网络嵌入,将其用作SVM的输入。SVM和GCN中的最佳模型准确率>63%。对PLE患者与对照之间的网络连通性研究确定了右下顶叶皮层内一个名为PGi的区域,作为模块间通信的中心区域(网络枢纽)。类激活映射显示,PLE组在背外侧前额叶、眶额和极额叶皮层以及颞叶外侧皮层有显著区域,而对照组则没有。我们的研究证明了深度学习方法在区分亚临床精神病患者和可诊断疾病患者与对照方面的潜在有用性。从长远来看,这有助于提高临床诊断的准确性和可靠性,为进行诊断提供神经生物学基础,并启动早期干预策略。

相似文献

2
Graph Autoencoders for Embedding Learning in Brain Networks and Major Depressive Disorder Identification.
IEEE J Biomed Health Inform. 2024 Mar;28(3):1644-1655. doi: 10.1109/JBHI.2024.3351177. Epub 2024 Mar 6.
3
Graph Neural Network Learning on the Pediatric Structural Connectome.
Tomography. 2025 Jan 29;11(2):14. doi: 10.3390/tomography11020014.
4
Interpretable modality-specific and interactive graph convolutional network on brain functional and structural connectomes.
Med Image Anal. 2025 May;102:103509. doi: 10.1016/j.media.2025.103509. Epub 2025 Feb 25.
5
Functional connectomics of affective and psychotic pathology.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9050-9059. doi: 10.1073/pnas.1820780116. Epub 2019 Apr 15.
7
Widespread brain dysconnectivity associated with psychotic-like experiences in the general population.
Neuroimage Clin. 2014 Jan 18;4:343-51. doi: 10.1016/j.nicl.2014.01.006. eCollection 2014.
10
Dynamic Functional Connectivity States Reflecting Psychotic-like Experiences.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 May;3(5):443-453. doi: 10.1016/j.bpsc.2017.09.008. Epub 2017 Sep 28.

引用本文的文献

1
MentalAId: an improved DenseNet model to assist scalable psychosis assessment.
BMC Psychiatry. 2025 Jul 30;25(1):740. doi: 10.1186/s12888-025-07194-4.
3
Multi-modal cross-domain self-supervised pre-training for fMRI and EEG fusion.
Neural Netw. 2025 Apr;184:107066. doi: 10.1016/j.neunet.2024.107066. Epub 2024 Dec 24.

本文引用的文献

1
Revolutionizing core muscle analysis in female sexual dysfunction based on machine learning.
Sci Rep. 2024 Feb 27;14(1):4795. doi: 10.1038/s41598-024-54967-0.
2
Optimizing classification of diseases through language model analysis of symptoms.
Sci Rep. 2024 Jan 17;14(1):1507. doi: 10.1038/s41598-024-51615-5.
6
Threshold Selection for Brain Connectomes.
Brain Connect. 2023 Sep;13(7):383-393. doi: 10.1089/brain.2022.0082. Epub 2023 Jun 14.
7
Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies.
Mol Psychiatry. 2023 Jul;28(7):3013-3022. doi: 10.1038/s41380-023-01977-5. Epub 2023 Feb 15.
8
Graph Convolutional Networks Reveal Network-Level Functional Dysconnectivity in Schizophrenia.
Schizophr Bull. 2022 Jun 21;48(4):881-892. doi: 10.1093/schbul/sbac047.
9
Functional network connectivity and topology during naturalistic stimulus is altered in first-episode psychosis.
Schizophr Res. 2022 Mar;241:83-91. doi: 10.1016/j.schres.2022.01.006. Epub 2022 Jan 29.
10
Intelligent Health Care: Applications of Deep Learning in Computational Medicine.
Front Genet. 2021 Apr 12;12:607471. doi: 10.3389/fgene.2021.607471. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验