Suppr超能文献

加利福尼亚中新世史蒂文斯砂岩中的三维孔隙网络:对二氧化碳地质封存的启示

Three-Dimensional Pore Networks in Miocene Stevens Sandstone of California: Implications for CO Geologic Storage.

作者信息

Song Liaosha

机构信息

Department of Geological Sciences, School of Natural Sciences Mathematics and Engineering, California State University Bakersfield, Bakersfield, California 93311, United States.

出版信息

Energy Fuels. 2025 Jun 27;39(27):12992-13005. doi: 10.1021/acs.energyfuels.5c01771. eCollection 2025 Jul 10.

Abstract

The Miocene Stevens Sandstone in the San Joaquin Basin of California is increasingly recognized as a promising candidate for CO geological storage due to the enormous storage capacity, proven sealing, and existing infrastructure. In this study, computed microtomography imaging and pore network modeling were employed to investigate the influence of pore geometry and wettability on the CO injectivity and residual trapping. Image analysis revealed that a significant fraction of the cement and matrix consists of microporous regions. The microporosity can substantially increase the overall pore space, yet its contribution to permeability remains modest, particularly in samples with low permeability. The intrinsic heterogeneity of turbidite reservoirs further complicates the reservoir properties among different layers. Two-phase flow simulations under varying wettability conditions (water-wet, weak water-wet, and neutral-wet) demonstrated that the CO injection is predominantly controlled by macropores. CO invades microporous regions only after these larger pores are filled. The presence of microporosity leads to a decrease in both initial and residual CO saturations, with the magnitude of the reduction being influenced by wettability. Neutral-wet scenarios exhibit higher CO mobility and thus lower residual trapping than water-wet scenarios. The results imply that heterogeneity in pore geometry and cement distribution across different layers can result in stratified CO flow pathways, complicating efforts to predict injection performance. Overall, the Stevens Sandstone shows considerable promise for CO geologic storage, but effective implementation will require detailed characterization of the pore structure as well as the integration of reactive fluid flow to account for potential mineral dissolution and fines migration.

摘要

加利福尼亚州圣华金盆地的中新世史蒂文斯砂岩,因其巨大的存储容量、已证实的密封性和现有的基础设施,越来越被认为是二氧化碳地质封存的一个有前景的候选对象。在本研究中,采用计算机断层扫描成像和孔隙网络建模来研究孔隙几何形状和润湿性对二氧化碳注入性和残余捕集的影响。图像分析表明,很大一部分胶结物和基质由微孔区域组成。微孔率可大幅增加总体孔隙空间,但其对渗透率的贡献仍然不大,尤其是在低渗透率的样品中。浊积岩储层的固有非均质性进一步使不同层间的储层性质变得复杂。在不同润湿性条件(水湿、弱水湿和中性湿)下的两相流模拟表明,二氧化碳注入主要受大孔控制。只有在这些较大孔隙被填满后,二氧化碳才会侵入微孔区域。微孔率的存在导致初始和残余二氧化碳饱和度均降低,降低幅度受润湿性影响。中性湿情况比水湿情况表现出更高的二氧化碳流动性,因此残余捕集更低。结果表明,不同层间孔隙几何形状和胶结物分布的非均质性会导致分层的二氧化碳流动路径,使预测注入性能的努力变得复杂。总体而言,史蒂文斯砂岩在二氧化碳地质封存方面显示出相当大的潜力,但要有效实施,需要对孔隙结构进行详细表征,并结合反应性流体流动来考虑潜在的矿物溶解和细粒迁移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f76e/12257523/592b22ee0185/ef5c01771_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验