Wititsuwannakul Taveechai, Skinner Kevin C, Kammeraad Joshua A, Yang Di, Narayan Alison R H, Zimmerman Paul M
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.
J Phys Chem B. 2025 Jul 31;129(30):7766-7783. doi: 10.1021/acs.jpcb.5c04086. Epub 2025 Jul 16.
Non-heme iron (NHI) enzymes perform diverse oxidative transformations with precise control, which can be challenging to achieve with small molecule catalysts, such as the biosynthesis of tropolone. Among them, Anc3, a reconstructed ancestral α-ketoglutarate (α-KG)-dependent NHI dioxygenase, catalyzes a ring-expansion in fungal tropolone biosynthesis from a cyclohexadienone to afford the tropolone natural product stipitaldehyde (ring-expansion product) alongside 3-hydroxyorcinaldehyde (shunt product). This study reveals how the enzyme environment guides the reaction to the ring-expansion product preferably over the shunt product, where the precise selectivity ratio depends on just a handful of Anc3 residues. In particular, molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) simulations describe how the substrate binds within the NHI active site and can proceed through two distinct mechanisms, ring-expansion or rebound hydroxylation, to yield the two experimentally observed products. Discovery of a linear relationship of Δ values and hydrogen bond distances between Arg191 and the Fe(III)-OH group reveals that inhibition of the rebound hydroxylation step increases selectivity toward ring-expansion. Our findings suggest that the rebound hydroxylation rate is further tuned through the Fe(III)-OH bond strength, as influenced by specific secondary sphere coordination effects around the active site. These influences are largely orthogonal to the ring-expansion mechanism, which is shown to prefer to proceed through a radical pathway. In addition, a cationic pathway initiated by electron transfer from substrate to iron is shown to be unfavorable based upon thermodynamic considerations. Altogether, the atomistic details and reaction mechanisms delineated in this work have the potential to guide the tuning of the reaction pathway in related NHI enzymes for selective oxidation reactions.
非血红素铁(NHI)酶能够精确控制进行多种氧化转化反应,而这对于小分子催化剂来说可能具有挑战性,比如托酚酮的生物合成。其中,Anc3是一种经过重构的、依赖于α-酮戊二酸(α-KG)的NHI双加氧酶,它在真菌托酚酮生物合成过程中催化从环己二烯酮进行环扩展反应,生成托酚酮天然产物 stipitaldehyde(环扩展产物)以及3-羟基邻苯二甲醛(旁路产物)。这项研究揭示了酶环境如何引导反应优先生成环扩展产物而非旁路产物,其中精确的选择性比例仅取决于少数几个Anc3残基。具体而言,分子动力学(MD)和量子力学/分子力学(QM/MM)模拟描述了底物如何在NHI活性位点内结合,并可以通过两种不同的机制进行反应,即环扩展或反弹羟基化,从而产生两种实验观察到的产物。发现Δ值与Arg191和Fe(III)-OH基团之间的氢键距离存在线性关系,这表明抑制反弹羟基化步骤可提高对环扩展的选择性。我们的研究结果表明,反弹羟基化速率可通过Fe(III)-OH键强度进一步调节,这受到活性位点周围特定二级配位效应的影响。这些影响在很大程度上与环扩展机制无关,环扩展机制显示更倾向于通过自由基途径进行。此外,基于热力学考虑,由底物向铁的电子转移引发的阳离子途径被证明是不利的。总之,这项工作中描绘的原子细节和反应机制有可能指导相关NHI酶中反应途径的调节,以实现选择性氧化反应。