Trivedi Maitry Ronakbhai, Joshi Amogh Manoj, Shah Jay, Readhead Benjamin P, Wilson Melissa A, Su Yi, Reiman Eric M, Wu Teresa, Wang Qi
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA.
ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.
NPJ Aging. 2025 Jul 16;11(1):66. doi: 10.1038/s41514-025-00258-5.
The utilization of artificial intelligence in studying the dysregulation of gene expression in Alzheimer's disease (AD) affected brain tissues remains underexplored, particularly in delineating common and specific transcriptomic signatures across different brain regions implicated in AD-related cellular and molecular processes, which could help illuminate novel disease biology for biomarker and target discovery. Herein we developed a deep learning framework, which consisted of multi-layer perceptron (MLP) models to classify neuropathologically confirmed AD versus controls, using bulk tissue RNA-seq data from the RNAseq Harmonization Study of the Accelerating Medicines Project for Alzheimer's Disease (AMP-AD) consortium. The models were trained based on data from three distinct brain regions, including dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), and head of the caudate nucleus (HCN), obtained from the Religious Orders Study/Memory and Aging Project (ROSMAP). Subsequently, we inferred a disease progression trajectory for each brain region by applying unsupervised dimensionality transformation to the distribution of the subjects' expression profiles. To interpret the MLP models, we employed an interpretable method for deep neural network models, obtaining SHapley Additive exPlanations (SHAP) values and identified the most significantly AD-implicated genes for gene co-expression network analysis. Our models demonstrated robust performance in classification and prediction across two other external datasets from the Mayo RNA-seq (MAYO) cohort and the Mount Sinai Brain Bank (MSBB) cohort of AMP-AD. By interpreting the models both mechanistically and biologically, our study elucidated subtle molecular alterations in various brain regions, uncovering shared transcriptomic signatures activated in microglia and sex-specific modules in neurons relevant to AD. Notably, we identified, for the first time, a sex-linked transcription factor pair (ZFX/ZFY) associated with more pronounced neuronal loss in AD females, shedding light on a novel mechanism for sex dimorphism in AD. This study lays the groundwork for leveraging artificial intelligence methodologies to investigate AD at the molecular level, which is not readily achievable from conventional analysis approaches such as differential gene expression (DGE) analysis. The transcription factor implicated in sex difference also underpins a new molecular mechanistic basis of women's greater neurodegeneration in AD warranting further study.
在研究阿尔茨海默病(AD)相关脑组织中基因表达失调方面,人工智能的应用仍未得到充分探索,尤其是在描绘不同脑区中涉及AD相关细胞和分子过程的共同和特定转录组特征方面,这有助于为生物标志物和靶点发现揭示新的疾病生物学机制。在此,我们开发了一个深度学习框架,该框架由多层感知器(MLP)模型组成,用于使用来自阿尔茨海默病加速药物研发项目(AMP-AD)联盟的RNAseq协调研究中的批量组织RNA测序数据,对经神经病理学确诊的AD患者与对照组进行分类。这些模型基于来自三个不同脑区的数据进行训练,包括背外侧前额叶皮层(DLPFC)、后扣带回皮层(PCC)和尾状核头部(HCN),这些数据来自宗教团体研究/记忆与衰老项目(ROSMAP)。随后,我们通过对受试者表达谱的分布应用无监督降维变换,推断出每个脑区的疾病进展轨迹。为了解释MLP模型,我们采用了一种针对深度神经网络模型的可解释方法,获得了SHapley加性解释(SHAP)值,并确定了用于基因共表达网络分析的最显著的AD相关基因。我们的模型在来自Mayo RNA测序(MAYO)队列和AMP-AD的西奈山脑库(MSBB)队列的另外两个外部数据集中,在分类和预测方面表现出强大的性能。通过从机制和生物学角度对模型进行解释,我们的研究阐明了不同脑区的细微分子变化,揭示了在小胶质细胞中激活的共享转录组特征以及与AD相关的神经元中的性别特异性模块。值得注意的是,我们首次鉴定出一对与AD女性中更明显的神经元丢失相关的性连锁转录因子(ZFX/ZFY),为AD中的性别二态性揭示了一种新机制。本研究为利用人工智能方法在分子水平上研究AD奠定了基础,这是传统分析方法如差异基因表达(DGE)分析难以实现的。涉及性别差异的转录因子也为女性在AD中更大程度的神经退行性变提供了新的分子机制基础,值得进一步研究。